72 research outputs found

    Complex Projection of Quasianti-Hermitian Quaternionic Hamiltonian Dynamics

    Get PDF
    We characterize the subclass of quasianti-Hermitian quaternionic Hamiltonian dynamics such that their complex projections are one-parameter semigroup dynamics in the space of complex quasi-Hermitian density matrices. As an example, the complex projection of a spin-1/2 system in a constant quasianti-Hermitian quaternionic potential is considered.Comment: This is a contribution to the Proc. of the 3-rd Microconference "Analytic and Algebraic Methods III"(June 19, 2007, Prague, Czech Republic), published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Quasistationary quaternionic Hamiltonians and complex stochastic maps

    Get PDF
    We show that the complex projections of time-dependent η\eta -quasianti-Hermitian quaternionic Hamiltonian dynamics are complex stochastic dynamics in the space of complex quasi-Hermitian density matrices if and only if a quasistationarity condition is fulfilled, i. e., if and only if η\eta is an Hermitian positive time-independent complex operator. An example is also discussed.Comment: Submitted to J. Phys. A on October 25 200

    On the pseudo-Hermitian nondiagonalizable Hamiltonians

    Get PDF
    We consider a class of (possibly nondiagonalizable) pseudo-Hermitian operators with discrete spectrum, showing that in no case (unless they are diagonalizable and have a real spectrum) they are Hermitian with respect to a semidefinite inner product, and that the pseudo-Hermiticity property is equivalent to the existence of an antilinear involutory symmetry. Moreover, we show that a typical degeneracy of the real eigenvalues (which reduces to the well known Kramers degeneracy in the Hermitian case) occurs whenever a fermionic (possibly nondiagonalizable) pseudo-Hermitian Hamiltonian admits an antilinear symmetry like the time-reversal operator TT. Some consequences and applications are briefly discussed.Comment: 22 page

    Quantum Bi-Hamiltonian systems, alternative Hermitian structures and Bi-Unitary transformations

    Get PDF
    We discuss the dynamical quantum systems which turn out to be bi-unitary with respect to the same alternative Hermitian structures in a infinite-dimensional complex Hilbert space. We give a necessary and sufficient condition so that the Hermitian structures are in generic position. Finally the transformations of the bi-unitary group are explicitly obtained.Comment: Note di Matematica vol 23, 173 (2004

    Alternative Algebraic Structures from Bi-Hamiltonian Quantum Systems

    Full text link
    We discuss the alternative algebraic structures on the manifold of quantum states arising from alternative Hermitian structures associated with quantum bi-Hamiltonian systems. We also consider the consequences at the level of the Heisenberg picture in terms of deformations of the associative product on the space of observables.Comment: Accepted for publication in Int. J. Geom. Meth. Mod. Phy

    The Quantum-Classical Transition: The Fate of the Complex Structure

    Full text link
    According to Dirac, fundamental laws of Classical Mechanics should be recovered by means of an "appropriate limit" of Quantum Mechanics. In the same spirit it is reasonable to enquire about the fundamental geometric structures of Classical Mechanics which will survive the appropriate limit of Quantum Mechanics. This is the case for the symplectic structure. On the contrary, such geometric structures as the metric tensor and the complex structure, which are necessary for the formulation of the Quantum theory, may not survive the Classical limit, being not relevant in the Classical theory. Here we discuss the Classical limit of those geometric structures mainly in the Ehrenfest and Heisenberg pictures, i.e. at the level of observables rather than at the level of states. A brief discussion of the fate of the complex structure in the Quantum-Classical transition in the Schroedinger picture is also mentioned.Comment: 19 page

    Exact PT-Symmetry Is Equivalent to Hermiticity

    Full text link
    We show that a quantum system possessing an exact antilinear symmetry, in particular PT-symmetry, is equivalent to a quantum system having a Hermitian Hamiltonian. We construct the unitary operator relating an arbitrary non-Hermitian Hamiltonian with exact PT-symmetry to a Hermitian Hamiltonian. We apply our general results to PT-symmetry in finite-dimensions and give the explicit form of the above-mentioned unitary operator and Hermitian Hamiltonian in two dimensions. Our findings lead to the conjecture that non-Hermitian CPT-symmetric field theories are equivalent to certain nonlocal Hermitian field theories.Comment: Few typos have been corrected and a reference update

    Alternative Descriptions in Quaternionic Quantum Mechanics

    Full text link
    We characterize the quasianti-Hermitian quaternionic operators in QQM by means of their spectra; moreover, we state a necessary and sufficient condition for a set of quasianti-Hermitian quaternionic operators to be anti-Hermitian with respect to a uniquely defined positive scalar product in a infinite dimensional (right) quaternionic Hilbert space. According to such results we obtain two alternative descriptions of a quantum optical physical system, in the realm of quaternionic quantum mechanics, while no alternative can exist in complex quantum mechanics, and we discuss some differences between them.Comment: 16 page

    Complex Projection of Quasianti-Hermitian Quaternionic Hamiltonian Dynamics

    No full text
    We characterize the subclass of quasianti-Hermitian quaternionic Hamiltonian dynamics such that their complex projections are one-parameter semigroup dynamics in the space of complex quasi-Hermitian density matrices. As an example, the complex projection of a spin-½ system in a constant quasianti-Hermitian quaternionic potential is considered

    Pseudo-Hermiticity and Electromagnetic Wave Propagation: The case of anisotropic and lossy media

    Full text link
    Pseudo-Hermitian operators can be used in modeling electromagnetic wave propagation in stationary lossless media. We extend this method to a class of non-dispersive anisotropic media that may display loss or gain. We explore three concrete models to demonstrate the utility of our general results and reveal the physical meaning of pseudo-Hermiticity and quasi-Hermiticity of the relevant wave operator. In particular, we consider a uniaxial model where this operator is not diagonalizable. This implies left-handedness of the medium in the sense that only clockwise circularly polarized plane-wave solutions are bounded functions of time.Comment: 12 pages, Published Versio
    corecore