73 research outputs found

    Changing geo-ecological functions of coral reefs in the Anthropocene

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record The ecology of many coral reefs has changed markedly over recent decades in response to various combinations of local and global stressors. These ecological changes have important implications for the abundance of taxa that regulate the production and erosion of skeletal carbonates, and thus for many of the geo-ecological functions that coral reefs provide, including reef framework production and sediment generation, the maintenance of reef habitat complexity and reef growth potential. These functional attributes underpin many of the ecosystem goods and services that reefs provide to society. Rapidly changing conditions of reefs in the Anthropocene are likely to significantly impact the capacity of reefs to sustain these geo-ecological functions. Although the Anthropocene footprint of disturbance will be expressed differently across ecoregions and habitats, the end point for many reefs may be broadly similar: (a) progressively shifting towards net neutral or negative carbonate budget states; (b) becoming structurally flatter; and (c) having lower vertical growth rates. It is also likely that a progressive depth-homogenisation will occur in terms of these processes. The Anthropocene is likely to be defined by an increasing disconnect between the ecological processes that drive carbonate production on the reef surface, and the net geological outcome of that production, that is, the accumulation of the underlying reef structure. Reef structures are thus likely to become increasingly relict or senescent features, which will reduce reef habitat complexity and sediment generation rates, and limit reef potential to accrete vertically at rates that can track rising sea levels. In the absence of pervasive stressors, recovery of degraded coral communities has been observed, resulting in high net-positive budgets being regained. However, the frequency and intensity of climate-driven bleaching events are predicted to increase over the next decades. This would increase the spatial footprint of disturbances and exacerbate the magnitude of the changes described here, limiting the capacity of many reefs to maintain their geo-ecological functions. The enforcement of effective marine protection or the benefits of geographic isolation or of favourable environmental conditions (“refugia” sites) may offer the hope of more optimistic futures in some locations. A plain language summary is available for this article.Royal Societ

    Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe capacity of coral reefs to maintain their structurally complex frameworks and to retain the potential for vertical accretion is vitally important to the persistence of their ecological functioning and the ecosystem services they sustain. However, datasets to support detailed along-coast assessments of framework production rates and accretion potential do not presently exist. Here we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant maximum accretion potential (RAPmax) of the shallow reef zone of leeward Bonaire – between 5 to 12 m depth – at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived RAPmax rates varied3 considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (> 10 kg CaCO3 m-2 year-1 35 ), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (< 2 kg CaCO3 m-2 year-1 36 ) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budgets states, and thus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized land-based impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low-accretion potential will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea-level rise (SLR), thus posing a threat to reef functioning, biodiversity and trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presented here are rather the rule than the exception, but the study also highlights the need for similar high spatial resolution (along-coast) assessments of budget states and accretion potential to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropogenic disturbance and restoring framework-building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large-scale submergence of Caribbean coral reefs and will constrain the social and economic implications associated with the loss of reef goods and services.Ministry of Economic AffairsWageningen UniversityRoyal Netherlands Institute for Sea Researc

    Caribbean-wide decline in carbonate production threatens coral reef growth

    Get PDF
    This a post-print, author-produced version of an article accepted for publication in Nature Communications. Copyright © 2013 Nature Publishing Group . The definitive version is available at http://www.nature.com/ncomms/journal/v4/n1/full/ncomms2409.htmlGlobal-scale deteriorations in coral reef health have caused major shifts in species composition. One projected consequence is a lowering of reef carbonate production rates, potentially impairing reef growth, compromising ecosystem functionality and ultimately leading to net reef erosion. Here, using measures of gross and net carbonate production and erosion from 19 Caribbean reefs, we show that contemporary carbonate production rates are now substantially below historical (mid- to late-Holocene) values. On average, current production rates are reduced by at least 50%, and 37% of surveyed sites were net erosional. Calculated accretion rates (mm year(-1)) for shallow fore-reef habitats are also close to an order of magnitude lower than Holocene averages. A live coral cover threshold of ~10% appears critical to maintaining positive production states. Below this ecological threshold carbonate budgets typically become net negative and threaten reef accretion. Collectively, these data suggest that recent ecological declines are now suppressing Caribbean reef growth potential

    Wave-swept coralliths of Saba Bank, Dutch Caribbean

    Get PDF

    Toward the Ultrasonic Sensing of Organic Carbon in Seagrass‐Bearing Sediments

    No full text
    Ten percent of all organic carbon (Corg) absorbed by the ocean each year is stored in seagrass-bearing sediments. The preservation of these carbon stores is considered a vital method to mitigate climate change. Seagrass-bearing sediments have been correlated with sediment geophysical properties yet have not been related to sediment acoustic properties. For this purpose, sediment cores were collected from a Thalassia testudinum seagrass meadow in South Texas, USA, where geophysical, acoustical, and Corg properties were measured. It is hypothesized that when deposits of Corg adsorb onto mineral surfaces and are stored in pore spaces, compliant layers between grain contacts and the formation of an organic-rich suspension reduce sediment stiffness. Results from this seagrass meadow demonstrated a strong correlation between sediment P wave modulus and Corg and show promise toward the development of an in situ ultrasonic sediment probe to more rapidly quantify and monitor seagrass carbon stores

    Differential Impact of Monsoon and Large Amplitude Internal Waves on Coral Reef Development in the Andaman Sea

    Get PDF
    The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies – a proxy for LAIW impact – explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs
    corecore