319 research outputs found

    Reef Benthic Fauna and Sediment Characterization

    Get PDF
    High-resolution backscatter and bathymetric maps created by multibeam sonar surveys were used to identify different seafloor bottom types within existing, potentially expanded, and newly proposed reef areas in New York waters. Existing sites included Smithtown in Long Island Sound (LIS), and Rockaway, Atlantic Beach, Hempstead, Yellowbar, Kismet, Fire Island, Twelve Mile along the South Shore. Potential expansions are proposed on the South Shore for McAllister, Moriches, and Shinnecock reefs in addition to a new site called Sixteen Fathom. In Long Island Sound, new sites are proposed for Huntington/Oyster Bay, Port Jefferson/Mount Sinai, and Mattituck. Grab samples were collected within these areas to characterize sediment properties and macrofauna. Multivariate analysis was used to identify important factors explaining variations in community structure. Sites within Long Island Sound had 3 to 10 bottom types (i.e., acoustic provinces), but sediments and benthic community structure was characterized by greater among site variation compared to within site variability. Sites along the South Shore had 4 to 12 bottom types (acoustic provinces), and although sediments were mostly sandy, there was substantial within site variation in benthic community structure

    Strong-field physics with mid-IR fields

    Get PDF
    Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasi-static regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photo-ionization and allowed a discrimination amongst different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: 1) intense mid-IR sources that can create high energy photons and electrons while operating within the quasi-static regime, and 2) detection systems that can detect the generated high energy particles and image the entire momentum space of the interaction in full coincidence. Here we present a unique combination of these two essential ingredients, namely a 160\~kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a six order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low energy region is used to investigate recently discovered low-energy structures, while the high energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover we present, for the first time, the correlated momentum distribution of electrons from non-sequential double-ionization driven by mid-IR pulses.Comment: 17 pages, 11 figure

    Imaging the Renner-Teller effect using laser-induced electron diffraction

    Full text link
    Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS2_2) in the B1^1B2_2 excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS2_2 molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement. We invoke the Renner-Teller effect to populate the B1^1B2_2 excited state in neutral CS2_2, leading to bending and stretching of the molecule. Our results demonstrate the sensitivity of LIED in retrieving the geometric structure of CS2_2, which is known to appear as a two-center scatterer

    Extracellular cyclophilin-A stimulates ERK1/2 phosphorylation in a cell-dependent manner but broadly stimulates nuclear factor kappa B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure.</p> <p>Methods</p> <p>We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells.</p> <p>Results</p> <p>Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFÎşB) signaling induced in all cell lines tested.</p> <p>Conclusions</p> <p>We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific.</p

    Polyatomic Molecular Structure Retrieval using Laser-Induced Electron Diffraction

    Get PDF
    Laser-induced electron diffraction is a developing dynamical imaging technique that is already able to probe molecular dynamics at few-femtosecond temporal resolutions and has the potential to reach the sub-femtosecond level. Here we provide the recipe for the extension of the technique to polyatomic molecules and we demonstrate the method by extracting the structure of aligned and anti-aligned acetylene (Câ‚‚Hâ‚‚). We show that multiple bond lengths can be simultaneously imaged at high accuracy including elusive hydrogen containing bonds. Our results open the door to the investigation of larger complex molecules and the realization of a true molecular movie

    Polyatomic Molecular Structure Retrieval using Laser-Induced Electron Diffraction

    Get PDF
    Laser-induced electron diffraction is a developing dynamical imaging technique that is already able to probe molecular dynamics at few-femtosecond temporal resolutions and has the potential to reach the sub-femtosecond level. Here we provide the recipe for the extension of the technique to polyatomic molecules and we demonstrate the method by extracting the structure of aligned and anti-aligned acetylene (Câ‚‚Hâ‚‚). We show that multiple bond lengths can be simultaneously imaged at high accuracy including elusive hydrogen containing bonds. Our results open the door to the investigation of larger complex molecules and the realization of a true molecular movie

    Ultrafast imaging of the Renner-Teller effect in a field-dressed molecule

    Get PDF
    We present experimental results of linear-to-bent transition of field-dressed molecules, mediated by Renner-Teller effect. Using the state-of-the-art laser-induced electron diffraction (LIED) technique, we image a bent and symmetrically stretched carbon disulfide (CS2) molecule populating an excited electronic state under the influence of strong laser field. Our findings are well-supported by ab initio quantum mechanical calculations.Peer ReviewedPostprint (published version

    The yeast Cdc8 exhibits both deoxythymidine monophosphate and diphosphate kinase activities

    Get PDF
    AbstractThe existence of multifunctional enzymes in the nucleotide biosynthesis pathways is believed to be one of the important mechanisms to facilitate the synthesis and the efficient supply of deoxyribonucleotides for DNA replication. Here, we used the bacterially expressed yeast thymidylate kinase (encoded by the CDC8 gene) to demonstrate that the purified Cdc8 protein possessed thymidylate-specific nucleoside diphosphate kinase activity in addition to thymidylate kinase activity. The yeast endogenous nucleoside diphosphate kinase is encoded by YNK1, which appears to be non-essential. Our results suggest that Cdc8 has dual enzyme activities and could duplicate the function of Ynk1 in thymidylate synthesis. We also discuss the importance of the coordinated expression of CDC8 during the cell cycle progression in yeast
    • …
    corecore