146 research outputs found

    Insurance Law

    Get PDF

    Confocal Laser Induced Fluorescence with Comparable Spatial Localization to the Conventional Method

    Full text link
    We present measurements of ion velocity distributions obtained by laser induced fluorescence (LIF) using a single viewport in an argon plasma. A patent pending design, which we refer to as the confocal fluorescence telescope, combines large objective lenses with a large central obscuration and a spatial filter to achieve high spatial localization along the laser injection direction. Models of the injection and collection optics of the two assemblies are used to provide a theoretical estimate of the spatial localization of the confocal arrangement, which is taken to be the full width at half maximum of the spatial optical response. The new design achieves approximately 1.4 mm localization at a focal length of 148.7 mm, improving on previously published designs by an order of magnitude and approaching the localization achieved by the conventional method. The confocal method, however, does so without requiring a pair of separated, perpendicular optical paths. The confocal technique therefore eases the two window access requirement of the conventional method, extending the application of LIF to experiments where conventional LIF measurements have been impossible or difficult, or where multiple viewports are scarce

    Effect of ion cyclotron parametric turbulence on the generation of edge suprathermal ions during ion cyclotron plasma heating

    Get PDF
    The effect of parametric ion cyclotron turbulence on the heating of cold and suprathermal ions in the edge of a tokamak plasma during injection of high rf power in the ion cyclotron resonance frequency (ICRF) range is studied. The maximum turbulent heating rates for cold edge ions and suprathermal edge ions are calculated analytically for ion cyclotron turbulence driven by rf heating at the plasma edge. It is demonstrated that the maximum turbulent ion-heating rate for suprathermal ions is insufficient to explain the observed heating of edge ions. Therefore, the excitation of ion cyclotron turbulence by rf heating systems in the plasma edge is unlikely to be responsible for the experimentally observed large population of suprathermal ions in the edge of tokamak plasmas

    Spatial Structure of Ion Beams in an Expanding Plasma

    Full text link
    We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas

    Stability of stratified flow with inhomogeneous shear

    Get PDF
    The temporal evolution of perturbations in stratified flow with inhomogeneous shear is examined analytically by an extension of the nonmodal approach to flows with inhomogeneous shear. The solutions of the equations that govern the linear evolution and the weak nonlinear evolution of perturbations of the stream function for stratified flow with monotonic inhomogeneous shear are obtained. It is shown that stabilization of perturbations arises from nonmodal effects due to flow shear. Conditions at which these nonmodal effects may be strong enough to stabilize the Rayleigh-Taylor instability are presented. These analytical results are also compared to numerical simulations of the governing equations performed by Benilov, Naulin, and Rasmussen

    Electron and proton heating by solar wind turbulence

    Get PDF
    Previous formulations of heating and transport associated with strong magnetohydrodynamic (MHD) turbulence are generalized to incorporate separate internal energy equations for electrons and protons. Electron heat conduction is included. Energy is supplied by turbulent heating that affects both electrons and protons, and is exchanged between them via collisions. Comparison to available Ulysses data shows that a reasonable accounting for the data is provided when (i) the energy exchange timescale is very long and (ii) the deposition of heat due to turbulence is divided, with 60% going to proton heating and 40% into electron heating. Heat conduction, determined here by an empirical fit, plays a major role in describing the electron data

    Solar Cycle Variations In The Electron Heat Flux: Ulysses Observations

    Get PDF
    Solar wind observations by the Ulysses spacecraft now include nearly ten years of continuous ion and electron measurements. In this study, we report detailed measurements of the electron heat flux in the solar wind. In particular, we examine the heat flux measurements for long-term correlations with wave activity and solar wind speed. We find that the average heat flux, when scaled by R2,9to account for variations due to distance from the Sun, is constant and independent of heliographic latitude or solar cycle. We find that during both solar maximum and solar minimum, there is no significant correlation between the magnitude of the electron heat flux and the solar wind speed. Comparison of the electron heat flux data with wave activity indicates that the whistler heat flux instability does not play an important role in limiting the solar wind heat flux
    corecore