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Stability of stratified flow with inhomogeneous shear
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The temporal evolution of perturbations in stratified flow with inhomogeneous shear is examined analyti-
cally by an extension of the nonmodal approach to flows with inhomogeneous shear. The solutions of the
equations that govern the linear evolution and the weak nonlinear evolution of perturbations of the stream
function for stratified flow with monotonic inhomogeneous shear are obtained. It is shown that stabilization of
perturbations arises from nonmodal effects due to flow shear. Conditions at which these nonmodal effects may
be strong enough to stabilize the Rayleigh-Taylor instability are presented. These analytical results are also
compared to numerical simulations of the governing equations performed by Benilov, Naulin, and Rasmussen.
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I. INTRODUCTION rate of the instability in the absence of flow sheayis

It is well known that inversely stratified fluids for which ~ Historically, two different approaches have been used in
density increases upward are unstable due to the Rayleiglt’he development of linear stability theories for systems with
Taylor instability for all wavelengthg1]. The Rayleigh- sheared flows. Both techniques employ a spectral expansion
Tay]or instab”ity in a p|asma is governed by similar equa_in time. The first is the method of normal modes or the
tions for perturbations of electrostatic potential and density’modal” approach. In a system withzadependent flow ve-
That instability develops in plasmas embedded in an unfalocity vo(z) directed along thex axis, the perturbations are
vorably curved magnetic field with a density gradient anti-assumed to be harmonic in time with separable time and
parallel to the magnetic field radius of curvature. In suchspace dependencies described Ipyr,t)=y(z)exp—iwt
magpnetically confined plasmas, examples of Rayleigh-Taylo ikx), where y(z) defines the mode structure. The flow is
modes include the ideal and resistive balooning instabilitie¢leemed unstable if at last one mode grows exponentially
[2]. A considerable amount of research has been devoted {gjth time. In the case of an ordinary sheared fluid, the mode
the study of the Rayleigh-Taylor instability in fluids and its gtycture #(z) is governed by a second-order differential

applic_ation to ionosphgric turbulence. It _is belieyed that theequation that possesses a singularity at a critical 169l
Rayleigh-Taylor instability can play a major role in the onset, heare the Doppler-shifted phase velociy/K)—v,(2) van-

of equgtonal sprea_d .E3’4]' In these physmal system_sz the ishes. Because of the singularity, the equations governing the
essential characteristics of the Rayleigh-Taylor instability are.odal structure are non-normal. i.e.. the eigenfunctions as-
similar. The instability arises in inhomogeneous medlisid 5, iated with the governing differential equation are not mu-

or plasma an_d acts to intt_erchange high- and lOW'den_Sitytually orthogonal and experience strong interference. There-
regions or to interchange high- and low-temperature regiongy e 5 stability analysis based on considering the only

In many regions of interest, such as the atmosphere, th@lgenvaluesw, obtained from the modal approach may be

|ono|sphere, or thle edge of tpkﬁmak plasma?, OLd'naré’ ::Ilu'dﬁlappropriate for certain ranges of system parameters, and a
or plasma may also contain inhomogeneously sheared flowgy, 1ion hased on solving the initial value problem is pre-

l.e., flow fields with a spatially varying flow _speed gradient. ferred. Several authors have pursued solutions of the initial
Ithas been shawn that homogen(_eous velomfcy she.a.r can hayg,,e problem through the use of a Laplace transform in
i\/”dramatm deféect 6ond the Raylelgh—hTa);Ilor |nﬁtabll|ty, €.9- time. The principal finding of the initial-value problem ap-
lles [5] an uq[ ] emon;trate t a'F oW Shear can Sup-yoach js that, in addition to the discrete eigenvalues linked
press the Rayleigh-Taylor instability in unbound systems, yhe normal modes, there exists a continuous spectrum of
with homogeneously sheared flows. Suppression of thgionyalues. Thus, the modal approach cannot provide a
Raylelgh—Taon_r |n§tabll|ty in plasmas by shear flow was aISOcomplete solution for all sheared flow systems. It was dem-
demonst[)e_xlt_ed in linear theory Ey (I‘?uzcéirert]l. [7]- ?g,nm- onstratedsee, for example, Ref8]) that owing to the exis-
can:cllgta llizatlon occurs In the linear theory 52| tence of the continuous spectrum of eigenvalues, initial dis-
=277y, whereuv(2) is the velocity shear and the growth ,rhances may decay or even grow as a nonmodal pertur-
bation with nonseparable space and time dependencies and
with time-dependent amplitudes that are power-law functions
*Electronic address: vmikhailenko@kipt.kharkov.ua of time. Such disturbances, at certain times, may overwhelm
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the exponentially growing modes of the discrete spectrunilows with inhomogeneous, monotonic, velocity shear are

[12] and always dominate over the exponentially decayingleveloped. In Sec. IV, the weak nonlinear temporal evolution

modes. Therefore, for the conditions at which the Rayleighof the nonmodal solutions is studied and some concluding

Taylor instability is stabilized by sheared flow, nonmodal remarks are presented in Sec. V.

effects should be considered. For those time intervals during

which the nonmodal solutions dominate, the nonmodal ef-

fects may even become strong enough to disrupt the devel- IIl. THE GOVERNING EQUATIONS

opment of the typical nonlinear processes predicted by non- \yg choose as our model a two-dimensional unbounded

Imea}r theories of normal mode evolution, and therefore ne lane with inhomogeneously sheared flow and an ex-

ggggn:hzguﬁ)éoggisgz ggﬁst%gr\sdgrowth of the nonmodal sol yonential density scaling. The equilibrium velocity,
An alternative approach to the initial-value problem Solu_Eressure, aznd density are glven bg=vo(2)ex, P(2)

tion for unbounded, homogeneously sheared flow was de- "0 €A~/ Po(21)dz], and py(2) =poo €Xp(=2/H), whereg

scribed by Hartmafi13]. That approach involves a transfor- 'S the acceleration due to gravipy, is the mean density, and

mation to coordinates in the local rest frame of the flow and iS the scale height for the density. The fluid is assumed to

does not invoke the normal mode ansatz or any spectral eXt® incompressible and therefore a stream functignyse,,

pansion in time. This method, previously used by Lordcan be defined through

Kelvin [14] in studying the evolution of initial disturbances o o

in parallel viscous flows with uniform shear, and by Phillips v=Vy= <— ——)

[15] in investigations of internal waves in a weakly sheared dz X

thermocline, yieldedasuccessfyl analysis of the e\(olution of The solution of the temporal evolution of inhomoge-

g'esrt]lé?fsngﬁz &(:sfetehei‘()flogzgt)reugsefgg féa;%afeg'fgnzgrsnoheoust sheared flow reduces to the solution of the set of

therein. In the flow frame coordinates, the evolution of an differential equations fors and density perturbatiom,

initial perturbation in homogeneously sheared flow is solv- J J . ol d oo

able analytically for any time of interest and is free from (E +U0(Z)a_x>(‘A'/f) +Uo(2)£+ (a_fg( - a_fa_z)m//

ambiguities arising from the mathematical singularity ap-

peared at a normal-mode critical level. Hartman’'s analysis _99dp

obtains the same constrairty(2)| =22y on the velocity po X’ (@)
shearv((z) for stabilization and suppression of Rayleigh-
Taylor instability as was obtained with the modal approach. ( 9 a apad I (;) ,9 Y

. Lo 5 )— - ——+—— |p=NZ=L, 2
However, Hartman found that the solution to the initial-value pe vl )ax o axam)P 20 9% 2

problem has a typically nonmodal power-law temporal de-
pendence and thus the normal mode solution is not thevhere the prime denoteBdz The linearized version of Egs.
steady-state limit for the initial-value problem. Weak nonlin- (1) and (2) may be combined through the Boussinesq ap-
ear analysis of the Rayleigh-Taylor instability in a plasma,proximation into the equation
performed by Mikhailenkeet al.[17] using a nonmodal ap- )
proach, demonstrated that homogeneous flow shear stabilizeé_ + vo(z)i> [ <i + vo(z)i>Az,//— vg(z)a—"b} - NzM,
not only linearly unstable two-dimensional perturbations of \ ot X ot X X X2
electrostatic potential, but also nonlinearly unstatttgms (3)
including the fourth order of the perturbed potential were
considerejl perturbations. Compared to the previous linearin which
analyses, the nonlinear analysis yielded a slightly different ,
constraint on the magnitude of the velocity shear required for NZ2=- M
stabilization of the Rayleigh-Taylor instability. Po

Until now, the nonmodal approach has only been applieds the grunt-vaisala frequency. In the normal mode ap-
to systems with homogeneous flow shear, ip(z) indepen- 5550k in which a stream functionis assumed to be har-
dent ofz. In this work, we develop an analytic framework for mgnic int, i.e., y(z)expikx—iwt), the equation for the mode
the extension of the nonmodal approach to flows with inhO,ctyrey(z) is called the Taylor-Goldstein equation and has

mogeneous shear and we also examine the stability of stratife form

fied flows with inhomogeneous shear. We will consider at the

outset only two-dimensional perturbations in a stratified me- d?y ( 5 kvg(2) k2N?
Q|um. The appllca_mon o_f a two-dimensional mode_zl is justi- dZ (kug(2) - ®)  (kug(2) - w)?
fied by the two-dimensional nature of the Rayleigh-Taylor

instability in fusion[2] and ionosphef7] plasma as well as with singular points, where the phase velocity matches the
in internal gravity waves in ordinary stratified fluifts0,11.  equilibrium velocity, w/k—-vo(2)=0. Such points are com-
The structure of this paper is as follows. In the next sectionmonly referred to as critical level®]. It follows from Eqg.

we formulate the basic nonmodal nonlinear equation that caf¥) that estimation of the shear-flow effect is related to the
be solved asymptotically in the case of inhomogeneous flovgolution of the nonlinear eigenvalue problem with singular
shear. In Sec. lll, the solutions of that equation for stratifiednonorthogonal eigenfunctions in the modal approach.

026306-2
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To avoid the mathematical difficulties involved in the nor- whereJ(7)=[N/v{(7)]? is the Richardson number. Equation
mal mode approach, here we use the nonmodal method. O(#) contains two parameters. Ong\(7)T, is the magnitude
approach permits the development of asymptotic methods fasf the flow sheatshear parametgrand the secondT, is an
analysis of the linear as well as the weak nonlinear evoluamplitude parameter, which defines a measure of the nonlin-
tionary stages for systems in which the inhomogeneous flowarity.  is the dimensionless time variable, defined toy
shearvy(2) is either a small or a large parameter. The non=Tr, whereT is the time scale of interest. The Laplacian
modal approach begins with a transformation to the conveceperatorA in the new variables is time-dependent and is

tive coordinates equal to
E=x-vo(t, 7m=z t=t, (5) A PP
=—+ —,
that are the coordinates in the local rest frame of the mean axe 9z
flow. These coordinates are generalizations of the convective
coordinates used previously in systems with homogeneously P P ul(n) 9
sheared flowg§13-17. In terms of the convective coordi- =zt P —2[116(77)T]T(9—a - [vé(n)T]Tﬁ_
nates, the system of equations may be combined into a single 3 &9m vo(7) 3
nonlinear differential equation for the stream functign , ) P
+[vo(7)T] TZ?- (7)
Lol 1 o, v, P ¢
vo(mT It vy(n) T vo(m) 0€ g IE In the new differential equation, the shear parameter,
vo(m)T, can be considered to be a small or large asymptotic
= 2%i<5—¢(ﬂ—¢_ ﬁ—'/"ﬂ_’p> parameter to determine the qualitative behavior of the solu-
loo(n)TI=dr\an 9§ 3¢ an tions and to develop appropriate asymptotic methods for so-
lution in the cases of weak or strong flow shear. Performing
T g d I J J
- ,8—,<—¢— - —l//—>v8( r;)—lp a Fourier transformations of E¢6) over variableg,
[vo(MTlvg(n) \dndé & dn 3
_ﬂ<ﬁ_¢i_f7_¢i><ﬁ_¢i_ﬁ_¢i)w ¢(T,|,n)=Jdgexp(—ia)lp(f,g,n), (8)
[o(DTPP\anag o€ an)\ond¢ o€y

(6)  the equation fori(7,l, ) is obtained from Eq(6) and is

[va(lnma%{ i W1 ‘”(T"”’)} B
:foulfouza(l _'1_'2){2[05:7;]2&37(%(;'; Dt A gl n)—i|1¢(7,|1,7,)£7A¢(7,|2, 77))
—ﬁ(v&(mmmmn)gb(r,lz,m+v6(n>lllz¢<r,ll,n>d‘“;'—7'j””—vz;(n)I%w(r,lz,n)&‘“;’—?';"’))] ©
|
where the terms of the order ¢gf are omitted and of the inversely stratified fluifi9,19] initial perturbations de-

velop as are typically obtained in modal approach solutions.
B N A o 1) N2 ) The development of the modal instability is followed by the
A(rl, ) = W - 2l mo(ﬂ)% —ilog(m) 7= 1T og(n) 7 - 12, development of nonlinear effects, which ultimately may lead
to instability saturation. Such “modal” turbulence may affect
(10) the mean flow by changing its structure through processes
) ) ) such as the formation Kelvin cat-eyes vortices in the critical
Equation(9) includes the effects of both flow shear inhomo- |ayer regiong9] and/or development of turbulent viscosity.
geneity and nonlinearity. To understand the role both of thesg is only during the long time evolution of such nonlinear
effects play in the complete solution, it is instructive to con-processes that nhonmodal effects might be important in the
sider these effects separately. case of weak flow shear.

It follows from Eqs.(6) and(7) [or Egs.(9) and(10)] that Is follows from Eq.(10) that nonmodal effects vanish for
flow shear is the source of the nonmodal time dependence eflues 7, such thatvy(7)=0. Nearby these zero shear re-
the stream function. Nonmodal effects are negligible in thegions, nonmodal effects are weak and therefore perturbations
case of weak flow shear, i.évy(7)|T<1. ForT=y", where  will develop as governed by the modal equations and the
v=~|N(zy)| is the local growth rate of the ordinary instability effects of shear flow are minimal. Note that all nonmodal

026306-3
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terms in Eq.(9) are multiplied by the wave-number compo- presented in this work. The temporal evolution of perturba-
nentl along the shear flow. Therefore, nonmodal effects alsdions in the case of monotonic, inhomogeneous flow shear
vanish for disturbances with=0. Small values of reduce was considered numerically by Benilat al. [19]. They

the effect of the flow shear and thus nonmodal effects areshowed that inhomogeneous flow shear stabilizes only short
again minimized. It follows from Eq€9) and(10) that non-  scale disturbances and leaves unstable large scale distur-
modal effects dominate whefvy(7)T|=1 and the wave bances, i.e., those with small wave numibetn the next
numberl is not small. Comparison of the modal and non-sections, we obtain linear and weak nonlinear solutions to
modal terms in Eq99) and(10) leads to a general condition Eq. (9) for inhomogeneous flow shear under the constraint

for dominance of nonmodal effects, given by Eq.(12) for the dominance of nonmodal effects. We
, show that under these conditions, the solutions for stream
loi(n)|T > max(l' lvg(7)] i) (11) function are stable. Therefore, E(L2) defines a boundary
0 log(m)]'th)’ for the regions of stable and unstable wave nuniber

whereh is the scale length of the perturbation along the flow
shear. FoiT=v71, Eq. (11) becomes

lvo(m)] > max( VY |v0,(77)| Yi> (12 Here we consider the effect of inhomogeneous shear on
tog(m] "1 the linear temporal evolution of perturbations in a system
When Eq.(12) is satisfied, the initial perturbation develops with stratified flow. In the case of strong flow shear, it is
according to the nonmodal constraints prior to the developconvenient to introduce a new variablgr, 7,1), defined by
ment of the modal instability. Therefore, Ed2) is akin to a
bifurcation condition that separates two distinctively differ- Ur,nl) =i Tr2W(1,1,)). (13
ent types of solutions to Eq9).
The temporal evolution of perturbations in the case ofFor zero order in the nonlinearity parametef, [i.e., we
strong, monotonic, inhomogeneous flow shear for which Eqomit the right nonlinear part of Eq9)], we obtain the fol-
(12) is satisfied is the focus of the rest of the analytic analysidowing equation for¢:

IIl. LINEAR EVOLUTION STAGE OF PERTURBATIONS
IN INHOMOGENEOUSLY SHEARED FLOW

2 212 H ” " . .
|2‘7§((977’2|’”)+N|2§(7,|,77)+ 2l 1 P _<UO> L 1PL o v 4l 1 PL Al 1ag

(vg) (vgT) 797°97 (voT) 797 I v_(',(v(’)T) (vgT) ?67’6’7] (v oy

+7“<v_6>¢1&_£+6_'21§( , )+1zi(v_6 ! )15( . )+2i<v_8 1 )gaz_é_ 42 10
v) wgT) 2or g2 T o\ v we?) A7 T Can\ v (g2 2o (g2 P ar

1
;é“(ﬂl,n) -

=
Vo

_81(0_3 1 )iﬁjm(_) 1 18_54(_) 1 1.4% 16(_> 1 1A 1 19
In\vg(veT)?) 7 or vo/ e an  \vg/ (vhT)? 7 dmar? vo) T2 P amar  (viT)? 2 anfor?
12 1% 4 1 &¢ 6 15¢

4 — - ——>=0. 14
o TR 2o (wiT)2 P anfor  (vgT)? 1*an? (14
[
The presence of the small paramefief(7)T]1<1 in Eq. PLo(r 1, ) 1 _
(14) permits us to obtain a solution in terms of a power series P + J(”)§§0(7v| ) =0, (16)

in the parametefv)(7)T] ™2,
obtained earlier by Hartmai3] for the case of the homo-
geneous flow shear. The solution to E@6) is easily ob-

1 i .
drlm) = ol m) + mﬁ(ﬂ'ﬂ}) tained and is equal to
1 §0(7':|y77) :Cl(lrn)qkl-}-CZ(l!??)qkzv (17)
* [v(')(,])-r]2§2(7’|'7’) o (15 for the casel(#) # 1/4, where

By employing this new power series approach, we can obtain ky o= 1 £ A /l - (7). (18)
homogeneous asymptotic solutions for times [v(7) T] ™ c2 4
in systems with inhomogeneously sheared flows for Whid]:or\](oy):lm thesolution is

the condition[vy(7)T] 1< 1 is fulfilled for all considered
values ofz. For ¢, we have the equation Lo(ml,m) = 7 Cy(l, ) + Cy(l, p)In 7]. (19

026306-4
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It follows from the solution(17) that the stream function |v{(7)|T>max (lh)~*]in Eqg.(11) violates near the boundary,

¢ decays with increasing time, when the condition where the spatial scale of the perturbations along the flow
, 12 shear tends to zero. Therefore, E4s7) and(19) are actually
lvo(m] =275y (20 asymptotic solutions, which are valid for times

is fulfilled for all » considered(as it is in the case of the =[vo(7n)T]™ and for locations far from the boundaries,

homogeneous shear flow where the conditions given by E(L1) or Eq.(12) are valid.
The perturbation of the fluid density in the convective For the solution of specific initial and boundary problems,
coordinates is given by the obtained solutions here would have to be matched with
the solutions for (7,l,7), obtained for the timesr
p=—ilpp— < 21y C21J(2> <[v(n) Tt and near the boundaries. However, the solution
1 of the complete problem, which includes the initial and

boundary problem, is beyond the scope of this work. Here,
only the effect of the inhomogeneously sheared flow on the
stability of the stratified fluid, i.e., the unbounded case, is

Thus, the perturbation of fluid density grows slowly in time
as 7 (see also Ref[17]), where

1 |1 A considered

K“E*‘ 4 + m . Turning to the next term in the series according to Eq.
o7 (15), the equation foi;(7,1, %) is given by

Such a dramatic difference between the time dependencies of

the stream function and the density perturbations in a linear T (7l ) +J(7])l§ (.1, 7)

system is strictly a nonmodal effect arising from the velocity a7 2000

shear. . . . . v 1Pl v 1
It is interesting to note that in convective coordinat®s =g 202760 _ 5% = %0, o ——§0(7,|,77)
spatial derivatives iny are absent in the equation fg§ and g a7 lug? ar oy
the spatial variable; only enters into Eq(16) and into its 2i Pry 4 azgo 4i 3¢y
solutions(17) and(19) as a parameter. The specific spatjal (21)

dependence of the solutiofi&7) and(19) is determined en- ooy 1P amm 17y

tirely by the » dependence of the flow velocity(z) and by |n that equation, the derivatives ¢f over 7 are also absent
the initial conditions through which the functio® ,(I,7)  and Eq.(21) is also the ordinary differential equation. The
are determined. It is important to note that the conditionsolution to Eq.(21) is readily obtained and is equal to

7t ive(m) o 2 Ky oo
G(nl) =Call ), i kz)[ [06(77)]2(3k1 1(](1+8)+vé( )&n[Zkl 3+ (K= 3Kk, + 2)(In 7+ 1)]
i akl(k§—3k1+2)< 1) (wo(n) , 2 ok ﬂ
i In 7+ — 3K2 - 10k, + 8) - Lok, -3
wmam kN ag) T ag e T T, P
I(k -3k, +2) 07C17J< 14 (1o 2) (22

vo(nlky  d7
for J()#1/4 and

1 ilvg(np) 15 2 1 il 51 dC, dCy(18
§1<r,|,n):71—,2#4[c1(m i Zome |+ o P () @3

for J()=1/4. In Eq.(22), the notation(1+ 2) indicates the is that the stabilization of the Rayleigh-Taylor instability by
additional terms similar to those presented explicitly, butsheared flow persists even for inhomogeneous flow shear.
with relabeled suffixes ”c(l) andk; according to 1-2 and  The complete solution has the same structure of the stream
2—1. Equationg(17), (18), (22), and(23) demonstrate that function as obtainedin laboratory coordinatgesn Eq. (1.6)
solution ¢;(7)=0[7*y(In 7], i.e., solution{y(r) algebra-  of Ref. [11]. However, our solution, as given by E¢22)
ically decreases with time more rapidly under the conditionand(23), provides all the coefficients explicitly and the itera-
given by Eq.(20) than the solutioriy(7). Therefore, the so- tive procedure may be easily continued to the desired order
lution for the stream functiog=[v}(7) T4 L(D+(D]is  of the parametefuy(7)T]™.

stable in the case of strong monotonic, inhomogeneous, flow

shear for which Eq(12) is satisfied. Perhaps most important

026306-5
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IV. WEAK NONLINEAR EVOLUTION OF early unstable two-dimensional perturbations of electrostatic
PERTURBATIONS OF THE FLOW WITH potential, but also the nonlinearly unstable perturbations.
INHOMOGENEOUS SHEAR Now we consider the effect of weak nonlinear nonmodality

on the evolution of perturbation for inhomogeneous, mono-

Nonlinear studies of the Rayleigh-Taylor instability have tonic, shear flow. Here we derive a solution to E9).in the
been carried out in recent years by Hassdi6], form of the power series in the nonlinearity paramef€r
Mikhailenko et al. [17], and others. Hassam performed a 5
one-dimensional calculation and showed that the Rayleigh- g lm = Lo(ml,m) + (€D (n 1, 7) + (1) (71, 7)
Taylor instability in a magnetized plasma may nonlinearly oeee (24)
saturate because of flow shear. The nonmodal approach, ap-
plied to the study of the weak nonlinear evolution of the!n Eq.(24), the solutionfo(7,1, 77) is determined by Eq17)
two-dimensional Rayleigh-Taylor instability in plasmas with for J(77) # 1/4 and by Eq(19) for J(»)=1/4. Theequation
homogeneous flow shear by Mikhailenkbal.[17], demon-  for {(7,l, 7), in which terms of zero order in the parameter
strated that homogeneous flow shear stabilizes not only linty;T)™* are included, is

aZg (r.l,7) 1 iI2
%+J(n)?§(l)(7’l’n):fdllfd|25(| Sy -1

X{i|:— 01//0(Trll! 77)

P LLog(m 7Po( 702 m) + Liho(7 11, 1) — {[Uo(ﬂ)T]zlﬁo(T'z,ﬂ)}]}, (25
T an

WhereCi(j):Ci(Ij,n) (i,j=1,2. The solution to Eq(25) is given by

_ 1 BT 1 PG B S P R &_kl( g)]
g(l)(T,I,’/])— (kl—kz)[vé(yl)]zfdlljd|25(| Il |2)|2{|: 0(77) k2 (97] 4|(|2 |1) (?77 In T+ k2

><C<11)C(12)7krkz+{ﬁM(Cﬁl’dz cc?) - 2"2(0(2’(:(1 X | cin 2ngl)(m T+ Q)
ki vo(7) an an

+&<C(11)C(22)(9_k2+C(12)C<21)(9_k1)<|n +@)}+[ 8ikil,_vg(m) | 2111 dko _ (4l ko = 4l + 4il ko)
Ky an an (2ky = ky) Uo(ﬂ) (3ky—2) a7 (3k,—2)

ky
1 W@ ol A J f _ { (2)‘9(:1 -
><<In 3,2 )]CZ CP 7% } . kz)[vo(ﬂ)]z dly | dis(l =1, = 1,)-5| 2C§ 7

actV aCy aC 2i 1,13
+|CP— +CcP—= )— 2C(2)—2—7J<2‘kl}+—fdl fdl Sl -1y -1y 22
(2 7 Q% oy A2 (ko2 ) A1) A =hml5z

act? act act? 1 oac? 1
2c—- ke + <c<1> 2 c<1> -2CP 2 ———eki| + (12 (26)
an an ke dn (3ky—2)

for J() #1/4. In Eq.(26), the notation(1+« 2) indicates additional terms similar to the terms presented explicitly, but with
relabeled suffixes,=1,2 |nC andk; according toi=1 is changed to=2, andi=2 is changed té=1. For the values o
for which J(n)=1/4, {1)(7.1, 7] is given by

C(Zl) 2 C(l) 2 C(l 2) (2
Lol = (,])]2 f dly f dLa(1 =13 =15)13 I ncwlfﬁ C =, (C 3¢5
0
(1) (1) (1) (2)
+1In T<‘9§2 cP+ ‘fl CP + 6a&c c<2>> |n27’9(%c<22>]+|1{<3%c(1 16&C
n 7

(2) (2)
9C3 C(l) (9Cl C(l) 6 J9C 2 C(l) +1n? T&c(l)
an an ap 2

(2)
+—=—(CP+ 3C(21))) +1In (

an an 7
- %lz{[scg“cf) +16C5'CY + CP(C? +3CP)] + In 7(C'CP + CPCP + 6CCY) + In? TC(zl)C(ZZ)}} :
0

(27)
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Both expressions fof;(7) confirm that weak, nonmodal nitudes of the shear parametef(#)T, and the nonlinearity
nonlinearity does not eliminate the stabilization of theparameter,eT. In the specific case of monotonic shear,
Rayleigh-Taylor instability by inhomogeneous, monotonicsheared flow disturbances that satisfy E®) for all values
shear flow that satisfies the constraint described by(E2).  of 7 are stable to the development of Rayleigh-Taylor insta-
The solutions for the nonlinear nonmodal perturbation of thebility. The stabilization arises from nonmodal effects due to
stream functiomp(l)(r,l,n):[v[)(n)Tr]‘zg(l)(r) with either  the flow shear.

J(n)# 114 or J(n)=1/4 will decrease with time provided Stabilization of the Rayleigh-Taylor instability in plasmas
that and in ordinary, homogeneously sheared, flows was reexam-
ined in a recent paper by Benil@t al.[19]. They concluded
that stabilization of the Rayleigh-Taylor instability by homo-
lvy(n)] = %3,_ (28) geneous shear flow is a “quirk” of the model chosen and any
V3 deviation from a linear velocity profile triggers instability,
i.e., inhomogeneous shear is not stabilizing. Their conclusion
Otherwise the perturbations will grow algebraically. Thewas based on a study of the stability of small wave number,
constraint described by ER8) is more restrictive than the | perturbations in systems with monotonic shear flow and a
constraint given by E¢(20) for the linear stabilization of the  stdy of the stability of jet flow in the vicinity of a tip where
stream function because in the range/\2)y<[vo(m)|  vi(7)=0, i.e., the cases were considered in which shear flow
<(2/3)y, nonlinearly excited perturbations of the streameffects are too smalhs in the case of smdll or even absent
function ¢; will grow algebraically. (as at the tip of the jet floy However, it is important to note

It is interesting to note that the conditid@8) was ob-  that the stabilization of the Rayleigh-Taylor instability even
tained earlier in Refl17] for the case of homogeneous flow by homogeneous shear flow is not a universal effect for all
shear, even though the nonlindaight side of the equation  values of the flow shear; and wave numbel. Stabilization
for {;) was different in the cases of homogeneous and inhoby homogeneous flow shear requires fulfillment of the con-
mogeneous flow shear. The only differences in time dependition |vj(2)| =212y for linearly unstable perturbations and
dencies in the case of inhomogeneous shear are the appefutfillment of slightly more stringent conditions for nonlin-
ance of Inr and (In 7)? multipliers in Egs.(26) and (27),  early unstable perturbatiof$7]. In fact, homogeneous shear
because of they dependencies df; ,. However, these mul- flow provides no stabilizing effect for perturbations with
tiplicative factors do not affect the decaying nature of the=0 [17]. The stabilization condition found in this work, Eq.
solutions forz//(l):[v(’)(n)Tr]‘zg(l)(r) under the constraint of (12), is a similar constraint for inhomogeneously sheared
Eq. (29). flow. Our analysis is consistent with the numerical results

described in Ref[19] in that for cases where the effect of
V. CONCLUSIONS flow shear, as expressed through the nonmodal terms in Eq.
(6) or Eq.(9), is minimal or absentas it is in the two cases

In this work, we have developed an analytical frameworkexamined in Ref.[19]), the Rayleigh-Taylor instability

that is a natural extension of the nonmodal approach for hogrows. However, if the perturbation characteristics and flow

mogeneous sheared flows to the case of inhomogeneodsear satisfy Eq12), all perturbations of the stream function
shear. The linear and weak nonlinear evolution of perturbagre stable.

tions in systems with monotonic, inhomogeneous shear was

deterr_nlned and it Was_demonstrated that stablllza_tlor_l of the ACKNOWLEDGEMENTS

Rayleigh-Taylor instability by shear flow can persist in the
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