560 research outputs found

    Komponenta projekta ADRICOSM – sustav promatranja na velikoj skali – satelitski sustav

    Get PDF
    In the framework of the ADRICOSM project, the Satellite Oceanography Group (GOS) of Rome developed a Fast Delivery System (FDS) for providing the partner modeling centres with remotelysensed ocean colour and sea surface temperature (SST) data. Data are processed, mapped and binned on the Adriatic Sea area in order to be assimilated into both ecosystem models and circulation models for ocean forecasting. Further technological improvements permitted the building and optimization of a system suitable for meeting the increasing demand for near-real-time ocean colour and SST products for applications in operational oceanography. Real-Time Images of SeaWiFS chlorophyll concentration, clouds/case I/case II water flags and true colour images are obtained by processing the satellite passes using climatological ancillary data. These images are provided daily through an ad hoc automatic system that processes the raw satellite data and makes it available on the web within an hour of satellite overpass acquisition. All of the images are stored in a gallery web archive organized in a calendar chart. Accurate chlorophyll maps for assimilation are produced in near real time (typically after 4 days) as soon as daily meteorological ancillary data are made available on the NASA website. Each chlorophyll map is flagged for clouds or other contamination factors using the corresponding 24 quality flag maps. This implies that case-2 waters and spurious atmospheric effects have been removed from the pigment data set. This final product is binned on the Adriatic model grid and made available for the ADRICOSM project on the GOS web site. NOAA/AVHRR data are also acquired by the GOS ground station in Rome and managed by the FDS from their reception up to their distribution. Daily SST maps of the Adriatic Sea binned over the AREG model grid at 1/16° resolution are distributed weekly in Near-Real-Time along with the daily SST maps of the eastern Mediterranean Sea delivered at 1/8° resolution to the MFSTEP project. Real-Time SST maps of the Adriatic Sea at 1km resolution are posted daily in GIF format on the GOS website.U okviru projekta ADRISOSM, GOS (Grupa za satelitsku oceanografiju) iz Rima razvila je Sustav za brzu isporuku FDS, snabdijevanje partnerskih centara za modeliranje satelitskim snimcima boje mora i tem-peraturnim podacima površine mora (SST). Podaci za Jadran su obrađeni, pretvoreni u grafičke produkte i digitalizirani kako bi se mogli asimilirati u model strujanja i model ekosistema, te koristiti oceanografskoj prognozi. Daljnja tehnološka poboljšanja su omogućila izgradnju i optimalizaciju sustava, zbog rastućih potreba za produktima boje mora i površinske temperature za različite primjene u operativnoj oceanografiji. Slike koncentracije klorofila od senzora SeaWiFS, slike oblaka te Case1 i Case2 oznake, kao i slike prave boje dobivaju se procesiranjem satelitskih scena uz popratne klimatološke podatke. Slike se procesiraju dnevno kroz ad-hoc automatski sustav koji obrađuje sirove satelitske podatke i omogućuje njihovu isporuku na mrežu, sat vremena nakon prikupljanja satelitskih podataka tj. nakon prolaska satelita. Sve se slike spremaju u arihvu na mreži koja je organizirana prema datumima. Korigirane slike koncentracije klorofila za asimilaciju u model proizvode se u skoro realnom vremenu (tipično 4 dana kasnije) čim se dobiju popratni meteorološki podaci s mreže NASA-e. Na svakoj slici klorofila su označeni oblaci ili drugi kontaminirajući faktori, prema 24 kategorije kvalitete slika. To znači da su Case 2 slučajevi piksela uklonjeni iz snimaka kao i atmosferske sme-tnje. Konačni produkt se usklađuje s koordinatnom mrežom Jadrana i stavlja na raspolaganje na stranicama ADRICOSM-a preko GOS-ove Internet stranice. GOS zemaljska stanica u Rimu prikuplja i podatke NOAA/ AVHRR koji se procesiraju kroz FDS sustav, od prijema do konačne distribucije podataka. Dnevne se slike površinske temperature mora (SST), usklađene preko koordinatne mreže AREG-a pri prostornom razlučivanju od 1/16 stupnja, distribuiraju tjedno u skoro realnom vremenu, zajedno sa slikama istočnog Sredozemlja koje imaju razlučivanje od 1/8 stupnja prema MFSTEP projektu. Dnevno, u skoro realnom vremenu, isporučuju se slike SST za Jadran uz prostorno razlučivanje od 1 km u GIF formatu na Internet stranici GOS-a

    Application of unmanned aerial vehicle data and discrete fracture network models for improved rockfall simulations

    Get PDF
    In this research, we present a new approach to define the distribution of block volumes during rockfall simulations. Unmanned aerial vehicles (UAVs) are utilized to generate high-accuracy 3D models of the inaccessible SW flank of the Mount Rava (Italy), to provide improved definition of data gathered from conventional geomechanical surveys and to also denote important changes in the fracture intensity. These changes are likely related to the variation of the bedding thickness and to the presence of fracture corridors in fault damage zones in some areas of the slope. The dataset obtained integrating UAV and conventional surveys is then utilized to create and validate two accurate 3D discrete fracture network models, representative of high and low fracture intensity areas, respectively. From these, the ranges of block volumes characterizing the in situ rock mass are extracted, providing important input for rockfall simulations. Initially, rockfall simulations were performed assuming a uniform block volume variation for each release cell. However, subsequent simulations used a more realistic nonuniform distribution of block volumes, based on the relative block volume frequency extracted from discrete fracture network (DFN) models. The results of the simulations were validated against recent rockfall events and show that it is possible to integrate into rockfall simulations a more realistic relative frequency distribution of block volumes using the results of DFN analyse

    Gender-specific alteration of energy balance and circadian locomotor activity in the Crtc1 knockout mouse model of depression.

    Get PDF
    Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1's role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity

    Perceived and mentally rotated contents are differentially represented in cortical depth of V1

    Get PDF
    Primary visual cortex (V1) in humans is known to represent both veridically perceived external input and internally-generated contents underlying imagery and mental rotation. However, it is unknown how the brain keeps these contents separate thus avoiding a mixture of the perceived and the imagined which could lead to potentially detrimental consequences. Inspired by neuroanatomical studies showing that feedforward and feedback connections in V1 terminate in different cortical layers, we hypothesized that this anatomical compartmentalization underlies functional segregation of external and internally-generated visual contents, respectively. We used high-resolution layer-specific fMRI to test this hypothesis in a mental rotation task. We found that rotated contents were predominant at outer cortical depth bins (i.e. superficial and deep). At the same time perceived contents were represented stronger at the middle cortical bin. These results identify how through cortical depth compartmentalization V1 functionally segregates rather than confuses external from internally-generated visual contents. These results indicate that feedforward and feedback manifest in distinct subdivisions of the early visual cortex, thereby reflecting a general strategy for implementing multiple cognitive functions within a single brain region

    A Multi-Disciplinary Approach to the Study of Large Rock Avalanches Combining Remote Sensing, GIS and Field Surveys: The Case of the Scanno Landslide, Italy

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record.This research aims to highlight the importance of adopting a multi-disciplinary approach to understanding the factors controlling large rock avalanches using the Scanno landslide, Italy, as a case study. The study area is the Mount Genzana, Abruzzi Central Apennines, characterized by the regional Difesa-Mount Genzana-Vallone delle Masserie fault zone. The Scanno landslide is famous for its role in the formation of the Scanno Lake. The landslide is characterized by a wide exposed scar, which was interpreted in previous studies as the intersection of high-angle joints and an outcropping bedding plane on which the landslide failed sometime between the Upper Pleistocene and the Holocene. In this study, the Scanno landslide was investigated through the integration of geological, geomechanical and geomorphological surveys. Remote sensing techniques were used to enrich the conventionally gathered datasets, while Geographic Information Systems (GIS) were used to integrate, manage and investigate the data. The results of the authors investigation show that the outcropping landslide scar can be interpreted as a low-angle fault, associated with the Difesa-Mount Genzana-Vallone delle Masserie fault zone, which di ers from previous investigations and interpretations of the area. The low-angle fault provides the basal failure surface of the landslide, with two systematic high-angle joint sets acting as lateral release and back scarp surfaces, respectively. In light of these new findings, pre- and post-failure models of the area have been created. The models were generated in GIS by combining LiDAR (Light Detection and Ranging) and geophysics data acquired on the landslide body and through bathymetric survey data of the Scanno Lake. Using the pre- and post-failure models it was possible to estimate the approximate volume of the landslide. Finally, back-analyses using static and dynamic limit equilibrium methods is also used to show the possible influence of medium-to-high magnitude seismic events in triggering the Scanno landslide

    Modern role of magnetic resonance and spectroscopy in the imaging of prostate cancer

    Get PDF
    Recently, a large number of studies have shown that the addition of proton 1H-spectroscopic imaging (1H-MRSI) and dynamic contrast enhanced imaging (DCEMR) to magnetic resonance (MR) could represent a powerful tool for the management of prostate cancer (CaP) in most of its aspects. This combination of MR techniques can substantially sustain the clinical management of patients with CaP at different levels: in particular, (1) in the initial assessment, reducing the need for more extensive biopsies and directing targeted biopsies; (2) in the definition of a biochemical progression after primary therapies, distinguishing between fibrotic reaction and local recurrence from CaP. (C) 2011 Elsevier Inc. All rights reserved

    Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy

    Get PDF
    Purpose: This study aimed to prospectively analyze the role of magnetic resonance spectroscopy imaging (MRSI) and dynamic-contrast enhancement magnetic resonance (DCEMR) in the detection of prostate tumor foci in patients with persistently elevated prostate-specific antigen levels (in the range of >= 4 ng/mL to <10 ng/mL) and prior negative random trans-rectal ultrasound (TRUS)-guided biopsy. Experimental Design: This was a prospective randomized single-center study. One hundred and eighty eligible cases were included in the study. Patients in group A were submitted to a second random prostate biopsy, whereas patients in group B were submitted to a (1)H-MRSI-DCEMR examination and samples targeted on suspicious areas were associated to the random biopsy. Results: At the second biopsy, a prostate adenocarcinoma histologic diagnosis was found in 22 of 90 cases (24.4%) in group A and in 41 of 90 cases (45.5%) in group B (P = 0.01). On a patient-by-patient basis, MRSI had 92.3% sensitivity, 88.2% specificity, 85.7% positive predictive value (PPV), 93.7% negative predictive value (NPV), and 90% accuracy; DCEMR had 84.6% sensitivity, 82.3% specificity, 78.5% PPV, 87.5% NPV, and 83.3% accuracy; and the association MRSI plus DCEMR had 92.6% sensitivity, 88.8% specificity, 88.7% PPV, 92.7% NPV, and 90.7% accuracy, for predicting prostate cancer detection. Conclusions: The combination of MRSI and DCEMR showed the potential to guide biopsy to cancer foci in patients with previously negative TRUS biopsy. To avoid a potential bias, represented from having taken more samples in group B (mean of cores, 12.17) than in group A (10 cores), in the future a MRSI/DCEMR directed biopsy could be prospectively compared with a saturation biopsy procedure. Clin Cancer Res; 16(6); 1875-83. (C) 2010 AACR
    corecore