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A differential algebra based representation of the Line of Variations for Near Earth Objects impact monitoring is presented
in this paper. In this framework, the Line of Variations is described at the initial epoch by a high-order polynomial that is
propagated forward in time. An Automatic Domain Splitting algorithm is embedded in the numerical integrator, in such a way
that when the polynomials truncation error becomes too large, the line is split as many times as necessary to meet accuracy
requirements. The Line of Variations is propagated forward in time until an intersection with a properly defined target plane
occurs for all the generated subdomains. The projection of the subdomains onto the target plane allows to compute the impact
probability by numerically integrating an associated one-dimensional probability density function. The proposed approach is
applied to different test-cases to assess the performance of the method for the different possible shapes of the initial confidence
region. Starting from a case of direct encounter, the technique is tested up to the case of a resonant return, in which the
nonlinearities of the problem represent a critical aspect.
keywords: Line of Variations, Impact probability, Near Earth Asteroids, Resonant Return, Differential Algebra, Automatic
Domain Splitting

I. INTRODUCTION
The increasing attention towards Space Situational Awareness
(SSA) drives the development of efficient and reliable numer-
ical techniques for many different applications in the field of
astrodynamics. In particular, as more and more Near Earth
Objects (NEO) are detected by the scientists, an efficient es-
timation of their impact probability with the Earth becomes
a crucial requirement. If the observational campaign is short,
the initial uncertainty about the nominal asteroid’s state may
be large and its numerical propagation in a nonlinear dynam-
ics becomes computationally expensive. A critical case is
represented by the phenomenon of resonant return: when an
asteroid experiences a deep encounter with a major planet,
the set of possible post-encounter orbits is enlarged by the
encounter’s nonlinearities and the post-encounter period may
range between two values Pmin and Pmax. All the rational
numbers in this interval correspond to potential resonant re-

turns: indeed, if the asteroid’s period is P =
h

k
years, then

after k revolutions of the asteroid and h revolutions of the
Earth, the two bodies may come to a collision. Due to the first
encounter, the uncertainty region undergoes a strong expan-
sion and the computational burden rises accordingly.

The two classical techniques adopted for nonlinear un-
certainties propagation are Monte Carlo simulations and lin-
earizations. While the former are very accurate but time-
consuming, the latter are faster yet provide low accuracy. The
current state-of-the-art technique in this field is based on the
idea of the Line of Variations (LOV), introduced for the first
time by A. Milani in [4]. The LOV is a line of weakness
in the orbit determination solution that offers the possibil-
ity to describe the behaviour of the six-dimensional uncer-
tainty through a one-dimensional curve, exploiting its elon-
gated shape. When the orbit of an asteroid is determined, a
confidence region is associated to the nominal state: neglect-
ing higher order terms, this uncertainty can be represented by

a covariance matrix Γ(X), being X the six-dimensional or-
bital state. Calling σ(X) the largest eigenvalue of Γ(X) and
V1(X) the corresponding eigenvector, the LOV is defined as
the vector field that solves the differential equation:

dX

dσ
= σ(X)V1(X) (1)

In a linear approximation this simply reduces to the eigenvec-
tor corresponding to the major axis of the covariance ellipsoid
Γ(X).

Following the standard approach, as presented by Ches-
ley and Chodas in [2], the LOV is sampled according to the
chosen probability distribution, either uniform or Gaussian.
Each generated sample is called virtual asteroid (VA) and has
a certain probability to represent the true orbit. The VAs that
directly impact the Earth take the name of virtual impactors
(VI) and in the simplest approach the impact probability is
computed as the ratio of VIs over VAs. Such approach does
not consider all impacts that may occur for nearby off-LOV
solutions and therefore some local analysis in the neighbor-
hood of the close approaches must be performed. To perform
this analysis, a target plane has to be exploited to eliminate the
role of time: the b-plane (orthogonal to the incoming asymp-
tote of the geocentric hyperbola) can be adopted if the nom-
inal orbit enters the sphere of influence of the Earth. On the
other hand, the modified target plane (MTP) is orthogonal to
the closest approach point on the trajectoy and therefore in-
cludes larger nonlinearities in the numerical propagation. The
MTP was introduced in 1999 by Milani and Valsecchi in [5]
although the concept can be found earlier, see Chodas and
Yeomans in [10].

After projecting the initial covariance onto the target
plane at the collision epoch for the VIs, the impact probabil-
ity (IP) can be computed by integrating a one-dimensional or
two-dimensional probability density function (pdf), depend-
ing on the elongation of the confidence ellipse on the target
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plane that is by what amount the major axis Λ is larger than
the minor axis w:

• if Λ� w then PI =
p (σΛ)

Λ

• if Λ > w then PI =
p (σΛ) p (σw)

Λw
πr2
⊕

The approach proposed in this paper is to move from a
sampled description of the LOV to a polynomial representa-
tion of the curve, exploiting a differential algebraic framework
to perform the propagation of the polynomially described
curve. By propagating a continuous curve, one can avoid the
issue of interpolating between the different samples and a very
detailed description on the LOV evolution can be obtained.

The paper is organized as follows. Section II briefly in-
troduces differential algebra (DA) and the automatic domain
splitting (ADS) algorithm. Section III explains the numer-
ical technique adopted to define the target plane, propagate
the LOV until it intersects the plane and finally project the
curve onto the MTP. In Section IV, the IP computation tech-
nique is presented through integration of the one-dimensional
pdf. Section V shows the results from the application of the
technique to a direct encounter test case. Section VI explains
the issues indroduced by a resonant return and the technique
adopted to overcome the problem. Section VII presents the
issue of an enlarged initial confidence region and introduces a
potential solution. Finally, Section VIII concludes the paper.

II. DIFFERENTIAL ALGEBRA AND ADS
Differential algebraic techniques were developed after the
need to solve analytic problems with algebraic means. The
theory of DA was developed for the first time by Joseph Liou-
ville during the XIX century but the complete algebraic theory
of the technique was presented by Ritt in [7]. The following
overview is based on the description given by Martin Berz in
[1].

Typically, in a computational environment, numbers take
the place of functions and the algorithms are based on the
pointwise functions evaluation. DA techniques try to increase
the information that can be obtained from a function with re-
spect to its mere evaluation. This additional information is
provided by the implementation of an algebra of Taylor poly-
nomials to which differentiation and integration can be easily
added, thus obtaining a DA.

A relevant application of DA techniques arises for the in-
tegration of an ODE set, as explained in [3] in detail: in this
framework, a high order polynomial expansion of the final
integration state can be obtained with respect to the initial
condition. This is achieved by substituting all the operations
involved in the numerical integration scheme with the corre-
sponding DA operations. In particular, if the initial polyno-
mial represents the n-σ uncertainty region about the nominal
state, its numerical propagation yields a polynomial descrip-
tion of the confidence region at the final integration time.

When the dynamics is highly nonlinear and the propaga-
tion time is long enough, a single polynomial expansion is not
capable of providing an accurate description of the real con-
fidence region evolution. To maintain a certain level of accu-
racy, an Automatic Domain Splitting (ADS) algorithm can be

Fig. 1: Basic principle of Automatic Domain Splitting

implemented to support the simple DA propagation, see [9].
Such algorithm, whose working principle is sketched in Fig-
ure 1, estimates the truncation error of the polynomials over
their own domain and decides wheather the truncation error is
above or below a selected tolerance. When the estimated error
is larger than the tolerance, the previous integration state (i.e.
the last accurate state in the propagation history) is retrieved
and split in two equal parts along a certain direction. This di-
rection corresponds to the state variable along which the trun-
cation error is estimated to be the largest. By dividing the do-
main by a factor 2, the truncation error is reduced by a factor
2n+1, as explained in detail in [9]. The polynomials are then
evaluated on the two generated subdomains and propagated
independently until the truncation error overcomes again the
selected tolerance. This procedure is repeated as many times
as necessary, until a certain limit of splits Nmax is reached.
Once the splitting tolerance tolsplit and Nmax are defined,
the procedure is fully automatic and guarantees an accurate
nonlinear propagation of uncertainties. In this work, we have
set tolsplit = 10−10, Nmax = 16 and DA polynomials ex-
pansion order equal to 12.

The DA routines exploited in this work are implemented
in the DACE software and more details on the numerical im-
plementation can be found in [6]. The adopted numerical inte-
gration scheme is a DA version of a 7/8 Dormand-Prince (8th
order solution for propagation, 7th order solution for step size
control) Runge- Kutta integrator.

To better illustrate the application of ADS to ODE nu-
merical integration, the propagation of an initial uncertainty
within the Restricted Two Body Problem (R2BP) is now pre-
sented. Calling ~r and ~v the object’s position and velocity vec-
tors, the dynamics is given by:

~̇x =

 ~̇r = ~v

~̇v = − µ

r3
~r

(2)

where µ is the Sun gravitational parameter. The nominal ini-
tial conditions are set in such a way that the object starts mov-
ing from the pericenter of an orbit with eccentricity of 0.5,
lying on the ecliptic plane. The units are normalized and both
the pericenter radius and µ are equal to 1, thus leading to the
following initial conditions:

~x0 =


x = 1

y = 0

ẋ = 0

ẏ =
√

1.5

(3)
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Fig. 2: Propagation of a y-axis uncertainty in the R2BP

An initial uncertainty of δy = ±0.08 is taken on the y-axis
and propagated forward in time. The result is illustrated in
Figure 2, in which the evolution of the uncertainty line is plot
at different fractions of the orbital period. We can appreciate
the effect of nonlinearities, which entails the need of an in-
creasing number of splits of the line during the propagation.

III. DA-BASED LINE OF VARIATIONS
The Line of Variations is generated from the covariance ma-
trix expressed in Cartesian coordinates. All the data for this
analysis have been taken from the NEODyS database, that
provides covariance matrices expressed in Equinoctial param-
eters. The adopted conversion technique is now explained.
Calling ~xE the orbital state expressed in Equinoctial param-
eters and ~xC the Cartesian coordinates representation of the
same state, the two states are related by a nonlinear coordi-
nates transformation:

~xC = F(~xE) (4)

In a generic formulation the uncertainty region in the
Equinoctial parameters space can be described by moments
higher than just the mean and the covariance but in our case
only the covariance matrix is given in the initial coordinates
and only the covariance in the transformed coordinates is de-
manded. In the DA framework, the state in the original coor-
dinates is written as:

[~xE ] = ~xE + δ~xE (5)

where ~xE is the initial mean and the δ~xE is the 1σ variation.
Applying the transformation F to ~xE , yields the Taylor ex-
pansion of the final solution with respect to the deviations of
the initial independent variable δ~xE :

[~xC ] = F([~xE ]) = ~xC +MC(δ~xE)

=
∑

p1+···+pn≤k

cp1...pn · δx
p1
1 . . . δxpnn (6)

where ~xC is the zeroth-order term of the expansion map,
MC(δ~xE) is the Taylor map of the final state with respect

to the initial state and cp1...pn are the coefficients of the re-
sulting Taylor polynomial. The Taylor series in the form of
Equation 6 can be used to efficiently compute the propagated
statistics by computing the j-th moment of the transformed
pdf using a proper form of the j-th power of the solution map.
The analytical expressions of the first two statistical moments
for a generic scalar random variable z are:{

µ = E{z}
P = E{(z − µ)2}

(7)

where µ is the mean value, P is the covariance and the expec-
tation value of z is:

E{z} =

∫ +∞

−∞
zg(z)dz (8)

The moments of the transformed pdf can be computed by ap-
plying the multivariate form of Equation 7 to the Taylor ex-
pansion in Equation 6. The result for the first two moments
becomes:

~µi = E{[~xCi
]} =

=
∑
p1+···+pn≤k ~ci,p1...pn

~E{δxp11 . . . δxpnn }
~Pij = E{([~xCi

]− µi)([~xCj
]− µj)} =

=
∑
p1+···+pn≤k,
q1+···+qn≤k

~ci,p1...pn
~cj,p1...pn

~E{δxp1+q1
1 . . . δxpn+qn

n }

(9)

where ~ci,p1...pn
are the Taylor coefficients of the Taylor poly-

nomial describing the i-th component of [~xC ]. The expec-
tations in Equation 9 are computed through the Isserlis’ for-
mula. Full details on the method and its generalization can be
found in [8].

When the covariance matrix in Cartesian coordinates is
known, its eigenvalues and eigenvectors can be computed and
the LOV can be initialized, according to the linear approxima-
tion definition presented in Section I. Considering the eigen-
values and eigenvectors as sorted in ascending order of mag-
nitude (i.e. the last component corresponds to the major axis),
the LOV is first initialized in the space of the eigenvectors as:

XEIG =
[
0 0 0 0 0 Λ · δx6

]T
(10)

where Λ is a scaling factor for the DA polynomial. If the
desired analysis covers the±3σ interval, such factor becomes
Λ = 3

√
λ6. The real LOV is finally obtained by rotating

XEIG through the eigenvectors matrix U and summing up the
nominal state:

XLOV = X0 + U ·XEIG (11)

Before propagating the generated LOV, the target plane has to
be defined and we decided to adopt the MTP. To define the
plane, a propagation of the nominal state is performed until
the condition of minimum geocentric distance is met. Since
the propagation spans many revolutions of the asteroid, this
condition (i.e. ρ = ~rGEO · ~vGEO = 0) is verified several
times. In this version of the tool, we decided to work with
a given estimated collision epoch and therefore the condition
above is considered to be met only if it occurs inside a cer-
tain search timespan of ±100 days around the given collision
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epoch. When the scalar product ρ changes sign during the
propagation, a bisection routine is started to identify the ex-
act zero-scalar-product condition and subsequently define the
MTP reference frame.

When the MTP is defined, the full ADS-based propaga-
tion of the LOV can be performed within an N-body dynamics
with relativistic correction. The dynamics, taken from [9], is:

~̈r = G
∑
i

mi(~ri − ~r)
r3
i

{
1− 2(β + γ)

c2
G
∑
j

mj

rj
−

2β − 1

c2
G
∑
j 6=i

mj

rij
+
γ|~̇r|2

c2
+

(1 + γ)|~̇ri|2

c2
−

− 2(1 + γ)

c2
~̇r · ~̇ri −

3

2c2

[
(~r − ~ri) · ~̇ri

ri

]2

+

+
1

2c2
(~ri − ~r) · ~̈ri

}
+G

∑
i

mi

c2ri
·

{
3 + 4γ

2
~̈r+

+
{[~r − ~ri] · [(2 + 2γ)~̇r

r2
i

− (1 + 2γ)~̇ri]}(~̇r − ~̇ri)
r2
i

}
(12)

During the propagation, the initial LOV is split several times,
particularly if a deep encounter with a major planet occurs.
For each of the generated subdomains, the intersection with
the target plane close to the collision epoch shall be deter-
mined. A large number of numerical conditions has to be ap-
plied to avoid all possible issues. More specifically:

• the intersection must occur inside the search timespan.

• the intersection must occur in the same direction of the
nominal state.

• when a subdomain reaches the MTP or the final integra-
tion time and the following one is initialized for prop-
agation, the sign of the scalar product at the two states
may be opposite. Therefore the algorithm may detect a
fictitious crossing of the MTP that must be avoided.

• when a subdomain experiences a split while it lies across
the MTP, particular care has to be adopted to avoid that
one of the two generated subdomains misses the inter-
section with the plane.

To solve all these issues, when a subdomain is initialized for
propagation its propagation is forced to start with a fixed step-
size of 10−8. This guarantees a better control on the presented
numerical issues: exploiting the knowledge of the stepsize al-
lows to either include or exclude the first steps of a subdo-
main’s propagation from the MTP intersection checking.

The correct intersections of the MTP are identified by
checking at every integration step the following conditions:



tk > (tIMP − 100 dd)

(~rGEOk · ~V ) · (~rGEOk−1 · ~V ) < 0

~rGEOk · ~V > 0

|h| > 2 · 10−8

tk−1 < (tIMP −∆tmax)

(13)



tk > (tIMP − 100 dd)

~rGEOk · ~V > 0

|h| < 2 · 10−8

|~rGEOk−1 · ~V | > 10−10

~rGEOk |−1.0 · ~rGEOk |1.0 < 0

tk−1 < (tIMP −∆tmax)

(14)

In the equations above, tIMP represents the given collision
epoch, h is the current stepsize, k subscript refers to the k-
th integration step, k − 1 to the (k − 1)-th step and ∆tmax
is a fixed time interval that the propagator cannot span with a
single integration step. Note that the 4th condition of Equation
13 and the 3rd condition of Equation 14 are complementary
and therefore the two sets cannot be satisfied simultaneously.
If one of the two sets is fully satisfied, a Newton’s method can
be triggered to approach the plane.

When the propagation of all the subdomains is over, those
that intersected the MTP have to be projected onto the plane.
Instead of projecting along the direction normal to the plane,
the projection is performed along the direction of the velocity
vector in order to better approximate the dynamical path that
would lead each point of the subdomain to the MTP. DA can
be exploited to guarantee an accurate projection: By consid-
ering that we know the polynomial expansion of the asteroid’s
velocity along each subdomain, if we perform a full DA-based
projection, we can project each point of the subdomain along
its own velocity vector. The final position vector:

~r = x~i+ y~j + z ~k (15)

needs to be expressed as:

~r = c1 ~R+ c2~v + c3 ~Z (16)

where ~v is the polynomial expression of the box velocity vec-
tor while ~R and ~Z are the in-plane unit vectors of the MTP
frame. The goal of this projection is to find the coefficients
c1 and c3 that will represent the in-plane coordinates. The c2
coefficient that represents the out-of-plane coordinate is im-
plicitly set to zero. Computing the scalar product of Equation
16 with ~R, ~v and ~Z respectively, the result is:

~r · ~R = c1 ~R · ~R+ c2~v · ~R+ c3 ~Z · ~R = (17)

= c1 + c2~v · ~R

~r · ~v = c1 ~R · ~v + c2~v · ~v + c3 ~Z · ~v = (18)

= c1 ~R · ~v + c2v
2 + c3 ~Z · ~v

~r · ~Z = c1 ~R · ~Z + c2~v · ~Z + c3 ~Z · ~Z = (19)

= c2~v · ~Z + c3

The left-hand sides are known and are called A = ~r · ~R, B =

~r · ~v and C = ~r · ~Z for the sake of notation. Furthermore we
can call cosα = ~v · ~R and cosβ = ~v · ~Z and since the whole
procedure has been carried out with the normalized velocity
vector it follows that v2 = 1. The simplified system that
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needs to be solved becomes:

A = c1 + c2 cosα (20)

B = c1 cosα+ c2 + c3 cosβ (21)

C = c2 cosβ + c3 (22)

This system can be easily solved to find the expression of the
three coefficients c1, c2 and c3. Working within DA, all the
elements in the expressions above are polynomials and there-
fore the obtained coefficients are still polynomials. Since the
procedure is carried out not only with normalized ~v but also
with normalized ~r, the obtained coefficients need to be multi-
plied by |~r| to obtain the correct scaled MTP coordinates that
will be:

T~rMTP
=

[
Tc1 |~r| ~R
Tc3 |~r| ~Z

]
(23)

Together with allowing for a more accurate projection, DA
gives the possibility to have a polynomial expansion of the
MTP position vector, which means that the full Line of Varia-
tions is described as a one-dimensional polynomial expression
in MTP coordinates.

This has a key role in eliminating the time variable from
the subsequent analysis. Indeed, during the propagation the
confidence region very quickly spreads along the trajectory,
thus becoming an anomaly uncertainty. For this reason, all
the different subdomains reach the target plane at very dif-
ferent times but in any case very close to their actual point
of closest approach to the Earth. Therefore, by analyzing the
projection of the LOV onto the MTP, the impact probability
can be properly computed.

IV. 1D IMPACT PROBABILITY COMPUTATION
Once the propagation and the projection of the LOV have been
performed, the LOV is represented onto the MTP by a series
of subdomains of different dimensions, some of them having
a geocentric distance lower than the Earth radius. In Figure 3
a sketch of the LOV on the MTP is illustrated: the different
subdomains that constitute the LOV are highlighted with dif-
ferent colours and the impacting ones are dashed. Considering
a one-dimensional pdf associated to the LOV, the impact prob-
ability between the asteroid and the Earth can be computed by
integrating the pdf over the impacting subdomains. Different

X0 

Fig. 3: Sketch of the LOV projected on the MTP: dashed sub-
domains are the impactors and they are considered in
the IP computation

approaches can be exploited to perform the computation:

• Integration of the propagated pdf – The nonlinear dy-
namics enlarges the asteroid’s confidence region, thus
stretching the LOV. If a single subdomain is considered,
the ratio of its length at the final and initial epoch pro-
vides a stretching factor Λ1. This stretching factor can
be used to propagate the pdf associated to that subdo-
main. By multiplying it by the length of the subdomain
at the final epoch, the impact probability can be com-
puted:

IP =
p(σ)

Λ
l (24)

• DA-based Monte Carlo – In a DA framework, a polyno-
mial expansion of the final integration state with respect
to the initial conditions is given, as explained in Sec-
tion II. Therefore, the final state corresponding to each
point of the initial LOV can be retrieved by just evaluat-
ing this polynomial map. Therefore the initial LOV can
be sampled according to the chosen pdf and the impact
probability can be computed as the ratio of the number
of samples whose corresponding final state impacts with
the Earth and the total number of samples:

IP =
N⊕
N

(25)

• Integration of the pdf over the initial domain – Once the
impacting subdomains are detected, the impact proba-
bility can be computed by simply integrating the pdf as-
sociated to the initial LOV over the portion of the line
that collides with the Earth. This integration can be per-
formed analytically, exploiting a DA-based numerical
integration scheme, or algebraically by just assuming a
constant pdf over each subdomain.

The first method guarantees the possibility to perform a target
plane analysis, if needed. On the other hand the DA-based
Monte Carlo is very simple and accurate provided that the
final polynomial map is accurate enough. As this condition
is not guaranteed in the case of a highly nonlinear dynamics
and a target plane analysis in its standard sense (see [2]) is
not performed in this work, the third method is adopted. A
Gaussian pdf is associated to the initial LOV in the form:

pdf(x) =
1√
2πσ

e
−

(x− µ)2

2σ2 (26)

The mean value µ is equal to zero in this case as the pdf is
centered in the expansion point of the LOV. In the DA frame-
work the DA independent variable δ goes from −1 to +1 in
the corresponding real interval [−3σ,+3σ]. To compute the
probability density at a generic coordinate x = qσ (that is δ =
qσ
3σ

= q
3

) the exponent of Equation 26 expression becomes:

− (x− µ)2

2σ2
= − (qσ)2

2σ2
= −1

2
q2 = −1

2
(3δ)2 (27)

1The same symbol is used here as for the major axis of the confidence
ellipse on the MTP, seen in Section I. Indeed there is a strong cor-
relation between the two parameters. If we consider the initial 6D
confidence region and project it onto the MTP to become a 2D el-
lipse, in a first-order approximation its semi-major axis is exactly the
propagated and projected LOV
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and the pdf expression that can be adopted within the DA
framework is:

pdf(x) =
1√
2πσ

e
−

1

2
(3δ)2

(28)

In a first approximation, the subdomains whose center or one
of the extrema lie below the Earth surface can be considered as
fully impacting. A refinement can be offered by the possibility
to find the exact portion of the LOV that intersects the Earth
surface, increasing the precision in the computed IP. Making
reference to Figure 4, the subdomains are classified as:

• Transition – Moving from left to right along the LOV,
the last red subdomain before one or more blue subdo-
main and the first blue subdomain after one or more red
subdomains. For these subdomains the exact intersec-
tion shall be found.

• Internal – Subdomains whose center lies below the
Earth surface and are not close to the intersection. They
are considered as full impactors.

• External – Subdomains whose center lies above the
Earth surface and are not close to the intersection. They
are excluded from the IP computation.

For the transition subdomains, the intersection with the Earth
surface can be computed by numerically finding the root of
the function:

f = ||~rMTP|| −R⊕ (29)

where R⊕ is the Earth radius and |~rMTP| is the polynomial
expansion of the norm of the asteroid’s position on the MTP.
Finding the exact intersection between the LOV and the Earth
surface allows to define two coefficients Bi and Di that are
used to refine the IP computation. Before applying the bisec-
tion method, the presence of an actual zero has to be checked.
The function is evaluated at the extrema and at the center point
and the three values are called for simplicity:

A = f(+1) B = f(0) C = f(−1) (30)

Calling Z the root of the function, the different possibilities
arise for the assignment of the coefficients Bi and Di

1. A ·B < 0 Search for Z between 0 and +1.

a) A < 0

B = 0.5 · (1− |Z|)
D = 0.5 ∗ (1.0 + Z)

b) A > 0

B = 0.5 + 0.5|Z|
D = 0.5 ∗ (−1.0 + Z)

2. C ·B < 0 Search for Z between −1 and 0.

a) C < 0

B = 0.5 · (1− |Z|)
D = 0.5 ∗ (−1.0 + Z)

b) C > 0

B = 0.5 + 0.5|Z|

Transition

Internal ExternalExternal

Transition

Fig. 4: Principle of the IP refinement

D = 0.5 ∗ (1.0 + Z)

3. A < 0 & B < 0 & C < 0

B = 1

D = 0

4. A > 0 & B > 0 & C > 0

B = 0

D = 0

When this procedure is over, the impact probability is
computed through this formula:

IP =
∑
i

1√
2πσ

exp

{
−1

2

[(
ci +Di · 0.5wi

)
σ
]2}
·3σBiwi

(31)

in which ci and wi represent the center and the width of each
subdomain with respect to the original domain, respectively.
Di defines by what ammount the point of evaluation of the
pdf has to be shifted and Bi represents the portion of the sub-
domain that impacts with the Earth and therefore multiplies
the pdf.

V. ASTEROID 2010 RF12 – DIRECT ENCOUNTER
The presented technique is now applied to a test case with
a potential direct encounter collision, meaning that during
the propagation no deep encounter occurs between the initial
epoch and the collision epoch. Asteroid 2010 RF12 has a very
elongated initial confidence region with a ratio of 3.8 · 104

between the largest and the second eigenvalue of the initial
Cartesian covariance matrix, from now on called eigenvalues
ratio χ. Due to the high eigenvalues ratio, the LOV is ex-
pected to provide a very good approximation of the behaviour
of the full confidence region. This asteroid, whose initial con-
ditions at March 2018 have been taken from the NEODyS
database, presents a potential direct collision in 2095.

Figure 5 shows the projection of the LOV onto the MTP,
in which the low nonlinearity of the dynamics due to the ab-
sence of deep encounters is highlighted by the straight shape
of the line. The subdomains (represeted by the different
colours) get smaller and smaller getting closer to the planet
(the small black dot close to the right end of the LOV) and,
inside the Earth disk (in Figure 6 the detail is depicted) they
become extremely small. Table 1 presents the IP computation
for this test case, together with the reference value taken from
the NEODyS database. It can be observed that the accuracy
of the result is extremely high and the computational time of
about 17 minutes is satisfactory, considering that the collision
occurs in 2095, thus requiring about 80 years of numerical
propagation.
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order subdomains comp. time [s] IP IPNEODyS

12 91 1017 0.05943 0.06

Tab. 1: 2010 RF12 impact probability computation. The com-
putational time is the running-time on an an AMD
Opteron 6376 processor with a total of 64 cores @ 2.3
GHz and 256 Gbytes of RAM.
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Fig. 5: 2010 RF12: LOV projection onto the MTP
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Fig. 6: 2010 RF12: detail of the LOV projection onto the
MTP close to the Earth disk

VI. ASTEROID APOPHIS – RESONANT RETURN
A resonant return introduces relevant complexity in the com-
putation. To present this condition, the case of Apophis is
introduced. When first observed, the asteroid was estimated
to have a very high impact probability with the Earth in 2029.
When this collision was ruled out, the 2029 deep encounter
still accounted for a possible resonant return collision in 2036.
Further observations ruled out also this collision. The ini-
tial condition used for this analysis were given by G. Tommei
(private communication) and they are relative to a 2004-2005
observational campaign that includes the possibility of a 2036
collision. In this case we have χ = 5 · 102, which is lower
than the previous case but still describes an elongated initial
confidence region. Indeed, the nonlinearities due to the deep
planetary encounter critically enlarges the confidence region
and the LOV loses the straightness it presented in the previ-
ous case as evident in Figure 7. These nonlinearities induce a
very high number of splits that very likely reaches the maxi-
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Fig. 7: Apophis: LOV projection onto the MTP

-8 -6 -4 -2 0 2 4 6 8

10
-5

-6

-4

-2

0

2

4

6
10

-5

Fig. 8: Apophis: detail of the LOV projection onto the MTP
close to the Earth disk

mum number of splits Nmax. If this happens, the final poly-
nomial map is not accurate and therefore the computation of
the impact probability is not reliable. To better illustrate this
issue, Figure 8 shows the projection of the portion of the LOV
close to the Earth disk. It is evident that the inner subdomains
(in red and light blue) are completely inaccurate due to the
nonlinearitis and they could not be split further.

A solution to this problem is mandatory to guarantee a
satisfactory result for asteroids with a resonant return condi-
tion. To achieve this, a refining routine is proposed:

1. After the first propagation is over, the subdomains (ei-
ther accurate or inaccurate) whose center lies below the
Earth surface are identified.

2. Classify the subdomains as Internal, External or Transi-
tion subdomains.

3. Internal subdomains are considered full impactors even
if they are inaccurate in order to significantly reduce the
computational burden.

4. Consider the Transition subdomains and retrieve the last
accurate state within their propagation history.

5. Initialize a new ADS-based propagation of these subdo-
mains that allows to further split the sudomains and to
obtain an accurate polynomial map at least close to the
Earth surface.
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6. Identify the exact intersection between the LOV and the
Earth disk to compute an accurate IP.

1 1 1 1 0 0 0

1

0.63

0.326

Earth

Fig. 9: Basic principle of subdomains repropagation

The last item shall be discussed in more detail. Making
reference to Figure 9, the center points of the blue subdomains
lie below the Earth surface and the center points of the red
subdomains lie above the surface. Moving from left to right,
the last blue subdomain and the first red one constitute the
transition subdomains, as the intersection between LOV and
Earth surface may lie in either one or the other. These subdo-
mains are repropagated and a simulation of what the outcome
of this procedure might be is presented in the bottom part of
the same sketch: several sub-subdomains are generated from
each of the two initial subdomains. By applying a procedure
similar to the one applied to the first propagation, the exact in-
tersection can be identified inside one of the sub-subdomains.
A coefficient is associated to each sub-subdomain, represent-
ing its portion that lies below the surface. These coefficients,
together with the knowledge of the dimension of each sub-
subdomain, are used to define the coefficient Bi associated to
the i-th original subdomain (0.326 in the Figure).
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Fig. 10: Apophis: detail of the LOV projection onto the MTP
close to the Earth disk

The outcome of the repropagation routine for Apophis is
evident in Figure 10. The inaccurate subdomains are reprop-
agated and this grants a better description of the LOV. Some
subdomains inside the disk are detached from the rest of the
LOV: this is not due to inaccuracy of the polynomials but
rather to the projection routine. Indeed, the propagation of
the subdomains that have a collision with the Earth is stopped
and they are directly projected onto the MTP even if their cen-
ter does not lie on the plane. This introduces an error that can

order subdom. comp. time [s] IP IPREF

12 130 1474 3.0134 · 10−5 3 · 10−5

Tab. 2: Apophis impact probability computation

be considered to be quite negligible to the purpose of IP com-
putation. The outcome of the algorithm is presented in Table
2, and also in this case the computed value is very close to the
reference value.

VII. LOW EIGENVALUES RATIO AND 2D METHOD
The previous sections have shown two test cases in which the
LOV is able to approximate the behaviour of the full confi-
dence region and the computed impact probability is accu-
rate. If we consider the initial 6D uncertainty ellipsoid, in
general the VIs are gathered in a certain region, more or less
elongated and variously distributed inside the ellipsoid. If this
region lies across the LOV, i.e. the major axis, then the one-
dimensional LOV technique is capable of approximating the
impact probability of all the VIs by reducing the analysis on a
single direction. If the confidence region is very elongated this
is very likely to be true, while this assumption may fail if the
uncertainty ellipsoid is rather enlarged that is if the first two
eigenvalues are about the same order of magnitude. This con-
dition is witnessed by the eigenvalues ratio χ, that assumes a
key role in this analysis.

We have seen two cases in which the one-dimensional
technique is capable of providing an accurate IP value. Now
we want to assess the reliability of the method for lower val-
ues of the eigenvalues ratio. Consider asteroid 2016 LP10: it
has an eigenvalues ratio of about 8, that means the initial con-
fidence region is extremely enlarged. The application of the
technique presented so far yields IP = 0 even if the impact
probability according to the NEODyS database is 4.1 · 10−5.
This means that the VIs in this case lie in a region fully outside
of the LOV and therefore the one-dimensional technique fails.
Indeed, observing Figure 11, we can appreciate how the LOV
does not collide with the Earth (the black dot close to the blue
subdomain on the left). The classical LOV technique exploits
a projection onto the MTP of the covariance relative to each
VA in order to perform an off-LOV analysis. Yet, our anal-
ysis is carried out starting with a determined orbit and only
one covariance matrix is known for the whole distribution.
For this reason an off-LOV analysis cannot be performed and
another technique needs to be applied. The easiest approach
exploits the possibility to increase the number of variables of
the polynomials, by considering the first two eigenvalues of
the covariance matrix in the analysis.

Before presenting the two-dimensional approach, it is im-
portant to provide some hints on when the two methods have
to be applied. From additional analysis, the following guide-
lines have been identified:

• χ > 104 the eigenvalues ratio is large enough that the
one-dimensional technique can be deemed reliable.

• χ < 102 the eigenvalues ratio is too low to rely on
the one-dimensional technique and a multi-dimensional
technique has to be adopted.
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Fig. 11: 2016 LP10: LOV projection onto the MTP

• χ ≈ 102−103 the eigenvalues ratio has an intermediate
value and this is the most critical case. Two possibilities
arise:

IP = 0 in this case a multi-dimensional technique has
to be adopted to exclude the possibility of any off-
LOV impactors.

IP 6= 0 in this case the computed impact probability is
in general reliable, even if many VIs lie off-LOV.

This last consideration is particularly interesting and requires
some additional analysis to be fully explained. Consider a
case in which the eigenvalues ratio is intermediate, such as as-
teroid 2017 RH16 for which χ = 2.95·103. We can perform a
one-dimensional propagation, followed by a two-dimensional
propagation and for both propagations the impactors are iden-
tified. Figure 12 shows the 2D impactors (in blue) together
with the LOV (the red line) and the 1D impactor (in black) on
the plane of the first two eigenvectors. We can observe that
the 2D impactors lie almost orthogonally to the LOV and this
provides an explaination on how the one-dimensional tech-
nique is capable of providing a quite accurate impact proba-
bility (1.04 ·10−3 versus 1.45 ·10−3 as given from NEODyS)
even if most VIs lie outside the LOV. Indeed, if we integrate
a one-dimensional pdf we are implicitely integrating the other
dimensions from −∞ to +∞. More specifically, if we con-
sider the 1D impactor, this is equivalent to assuming as im-
pactor the full line orthogonal to the LOV and crossing the line
at the quote of the 1D impactor. Since the real VIs are almost
perpendicular to the LOV, the two outputs are very similar to
each other, thus justifying the adoption of a one-dimensional
reduction of the problem.

When the one-dimensional LOV approach cannot be as-
sumed to be reliable, a two-dimensional technique can be
adopted. This is achieved by just observing that in the DA
framework we can work with polynomials in n-variables.
Moving from one to two variables polynomials, the one-
dimensional LOV can be substituted by a sort of plane of vari-
ations that, as before, is initialized in the space of the eigen-
vectors as:

xEIG =
[
0 0 0 0 Λ5 · δx5 Λ6 · δx6

]T
(32)
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Fig. 12: 1D and 2D impactors for 2017 RH16

If we are performing a ±3σ analysis, the scaling factors are:

Λ5 = 3
√
λ5 and Λ6 = 3

√
λ6 (33)

xEIG needs to be rotated in the real Cartesian space as done
in Equation 11 and the result of this procedure will be a 6D
vector whose components are in this case six polynomials in
two variables.

During the propagation, the two-dimensional confidence
region quickly spreads along the anomaly, as shown in Figure
13 for asteroid 2016 LP10, yielding once again sort of stripe
on the MTP. It can be seen that in this type of propagation
the subdomains are much more subject to deformation after
reachingNmax. For the sake of visual clarity, the polynomials
are evaluated with a first order approximation to avoid that the
high-order terms generate an unreadable figure.

Fig. 13: 2016 LP10 2D confidence region projected onto the
MTP

The propagation of a multidimensional confidence region
requires a computational effort much larger than the one-
dimensional case. A large number of subdomains is created,
typically in the order of thousands, and many of them reach
the maximum number of splits. This has a significant effect
on the reliability of the method, since the accuracy of the final
map is in general compromised. When a subdomain reaches
Nmax, if the nonlinearities are large or if a long integration
is performed, the accuracy of the polynomial is totally lost.
Even in the best case, in wich the post-Nmax integration is
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very short and therefore the polynomial maintains a certain
accuracy, the dimension of the subdomains can be too large
for a proper estimation of impacting surface. In general this
means that the assumption that a single subdomain is either a
full impactor or completely outside of the Earth may be too
inaccurate for a proper IP estimation. The technique adopted
to overcome this issue is now presented.

During the integration, the distance from the Earth is
checked not only at the center but also at four points on the
boundary of each subdomain. Instead of considering the four
corners of the box, the evaluation points are taken as (−1, 0),
(1, 0), (0,−1) and (0, 1). This choice is due to the fact that
the four corner points are the most sensitive to the inaccu-
racy of the high-order polynomial coefficients. All the subdo-
mains that have at least one point below the Earth surface are
saved for further analysis. When the propagation of all boxes
is over, the impacting boxes are retrieved and, if they belong
to the group of subdomains that reached Nmax, they are re-
initialized and repropagated from the last integration step at
which the polynomial accuracy was met. This allows to ob-
tain a further splitting only of the relevant boxes as depicted
in Figure 14.

Such repropagation is performed with a lowerNmax, that
has to be tuned in a compromise between accuracy and com-
putational effort. In the multidimensional case, the boxes are
prone to many splits and may reachNmax even in the second
propagation, that means that they are split 32 times (consider-
ingNmax = 16) and still the polynomial accuracy is too low.
Yet, their dimensions would be extremely small with respect
to what is needed for an accurate IP computation and their
propagation would require an extremely large computational
effort. Instead, if the maximum number of splits is divided by
two or four, the computational time reduces to values in the
order of minutes, making the approach feasible.

Fig. 14: Principle of the repropagation of the impacting boxes

The IP computation for the 2D tool is performed by as-
signing a two-dimensional Gaussian pdf to the initial domain
and integrating it over the impacting domains. The standard
expression of a 2D pdf:

pdf(x1, x2) =
1

2π
√
|detΣ|

e
−

1

2
(x−µ)T Σ−1(x−µ)

(34)

is simplified thanks to the fact that the pdf is associated to the
space of the eigenvectors of the initial domain and therefore
the covariance matrix Σ is diagonal:

pdfi(δ1i , δ2i) =
1

2π
√
σ2

1σ
2
2

e
−

1

2
δ21i

32−
1

2
δ22i

32

(35)

with the same nomenclature as in Equation 28 and where 3

at the exponent represents the sigma-interval of the analysis:
[−3σ,+3σ].

In a first approximation approach, all the impacting boxes
resulting from the first ADS propagation are considered as full
impactors. The 2D probability density is obtained by evalu-
ating Equation 35 at the center, i.e. δ1i = δ2i = 0 and their
area is simply computed as:

Ai = 3σ13σ2w1iw2i (36)

The impact probability is therefore computed by:

IP =
∑
i

pdfiAi (37)

This result may be strongly affected by the fact that the im-
pacting subdomains have reachedNmax and therefore neither
they can be reliably assumed as full impactors nor they can
be used for a computation of the exact intersection. The im-
pactors repropagation, presented in the previous section, can
provide the necessary refinement. In this case the impacting
area is computed as:

Ai = Gi3σ13σ2w1iw2i (38)

where Gi is a coefficient that specifies the portion of the box
that really collides with the Earth and is evaluated as:

Gi =
∑
j

1

2
w1j

1

2
w2j (39)

where w1j and w2j are the widths in the two dimensions of
the j-th sub-subdomain generated by the repropagation of the
i-th subdoman that had a collision with the Earth surface.

The results obtained with the approximated and refined
methods are listed in Table 3. The repropagation of the im-
pacting boxes, in this case with Nmax = 4, requires about
3 additional hours of computational time but the outcome in
terms of IP accuracy is much more satisfactory if compared to
the IP value provided by NEODyS.

A delicate aspect of this procedure is the choice ofNmax
for the repropagation of the first impactors. In this case
Nmax = 4 was a very good choice but it may be too low. In
fact, in cases where the real impact probability is very small
or the dynamics is highly nonlinear the actual impactors may
represent a very tiny region of the impacting subdomains of
the first propagation and therefore a higher value for Nmax
may be required, still considering that as this value grows, the
computational effort may significantly rise.

comp. time [h] 2D IP IPNEODyS

not refined 8.48 5.8983 · 10−4 4.10 · 10−5

refined 11.51 4.3003 · 10−5 4.10 · 10−5

Tab. 3: 2016 LP10 impact probability computation

VIII. CONCLUSION
This paper presented a differential algebraic approach to the
Line of Variations technique to compute the impact proba-
bility of NEOs. The presented technique makes use of an
automatic domain splitting algorithm to provide an accurate
polynomial map from the initial to the final state during the
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numerical propagation. When the impactors are identified,
the exact intersection between the LOV and the Earth surface
can be computed, provided that the polynomial map is accu-
rate enough such as in a direct encounter case. In the case of a
resonant return, the nonlinearities of the dynamics enlarge the
uncertainty and the final polynomial map is inaccurate. To
correct this issue, the inaccurate subdomains of interest are
repropagated and finally the impact probability is computed.

The key role of the eigenvalues ratio is highlighted to de-
termine if the pure one-dimensional technique is reliable or
more dimensions shall be included in the analysis. While
the generation and propagation of a 2D plane of variations is
straightforward within DA, the identification of the impactors
and the computation of the IP presents some complexity. The
technique developed so far is computationally expensive, yet
it offers the possibility to estimate the impact probability for
every possible configuration of the initial confidence region.

The method presented in this paper does not overcome
the standard LOV technique in reliability or accuracy but it
paves the way to significant developments. The application of
DA to this type of uncertainty propagation has been proved
to be valuable. The optimization of the propagator and the
development of a fully automated algorithm would provide a
reliable alternative to the standard technique used today.
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