140 research outputs found

    An incoherent regulatory network architecture that orchestrates B cell diversification in response to antigen signaling

    Get PDF
    B cell receptor signaling controls the expression of IRF-4, a transcription factor required for B cell differentiation. This study shows that IRF-4 regulates divergent B cell fates via a ‘kinetic-control' mechanism that determines the duration of a transient developmental state

    IRF4 Is a Suppressor of c-Myc Induced B Cell Leukemia

    Get PDF
    Interferon regulatory factor 4 (IRF4) is a critical transcriptional regulator in B cell development and function. We have previously shown that IRF4, together with IRF8, orchestrates pre-B cell development by limiting pre-B cell expansion and by promoting pre-B cell differentiation. Here, we report that IRF4 suppresses c-Myc induced leukemia in EμMyc mice. Our results show that c-Myc induced leukemia was greatly accelerated in the IRF4 heterozygous mice (IRF4+/−Myc); the average age of mortality in the IRF4+/−Myc mice was only 7 to 8 weeks but was 20 weeks in the control mice. Our results show that IRF4+/−Myc leukemic cells were derived from large pre-B cells and were hyperproliferative and resistant to apoptosis. Further analysis revealed that the majority of IRF4+/−Myc leukemic cells inactivated the wild-type IRF4 allele and contained defects in Arf-p53 tumor suppressor pathway. p27kip is part of the molecular circuitry that controls pre-B cell expansion. Our results show that expression of p27kip was lost in the IRF4+/−Myc leukemic cells and reconstitution of IRF4 expression in those cells induced p27kip and inhibited their expansion. Thus, IRF4 functions as a classical tumor suppressor to inhibit c-Myc induced B cell leukemia in EμMyc mice

    GFS, a preparation of Tasmanian Undaria pinnatifida is associated with healing and inhibition of reactivation of Herpes

    Get PDF
    BACKGROUND: We sought to assess whether GFS, a proprietary preparation of Tasmanian Undaria pinnatifida, has effects on healing or re-emergence of Herpetic infections, and additionally, to assess effects of GFS in vitro. Undaria is the most commonly eaten seaweed in Japan, and contains sulphated polyanions and other components with potential anti-viral activity. Herpes simplex virus type 1 (HSV-1) infections have lower reactivation rates and Herpes type 2 (HSV-2) infections have lower incidence in Japan than in the west. METHODS: Patients with active (15 subjects) or latent (6 subjects) Herpetic infections (HSV-1, 2, EBV, Zoster) were monitored for response to ingestion of GFS. GFS extract was tested in vitro for human T cell mitogenicity and anti-Herpes activity. RESULTS: Ingestion of GFS was associated with increased healing rates in patients with active infections. In addition, patients with latent infection remained asymptomatic whilst ingesting GFS. GFS extract inhibited Herpes viruses in vitro and was mitogenic to human T cells in vitro. CONCLUSIONS: Ingestion of GFS has inhibitory effects on reactivation and is associated with increased rate of healing after Herpetic outbreaks. GFS extract potently inhibited Herpes virus in vitro, and had mitogenic effects on human T cells

    Irf4 is a positional and functional candidate gene for the control of serum IgM levels in the mouse

    Get PDF
    Natural IgM are involved in numerous immunological functions but the genetic factors that control the homeostasis of its secretion and upholding remain unknown. Prompted by the finding that C57BL/6 mice had significantly lower serum levels of IgM when compared with BALB/c mice, we performed a genome-wide screen and found that the level of serum IgM was controlled by a QTL on chromosome 13 reaching the highest level of association at marker D13Mit266 (LOD score¼3.54). This locus was named IgMSC1 and covered a region encompassing the interferon-regulatory factor 4 gene (Irf4). The number of splenic mature B cells in C57BL/6 did not differ from BALB/c mice but we found that low serum levels of IgM in C57BL/6 mice correlated with lower frequency of IgM-secreting cells in the spleen and in the peritoneal cavity. These results suggested that C57BL/6 mice have lower efficiency in late B-cell maturation, a process that is highly impaired in Irf4 knockout mice. In fact, we also found reduced Irf4 gene expression in B cells of C57BL/6 mice. Thus, we propose Irf4 as a candidate for the IgMSC1 locus, which controls IgM homeostatic levels at the level of B-cell terminal differentiation

    FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas.

    Get PDF
    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients

    Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Upon antigen encounter, naïve B lymphocytes differentiate into antibody-secreting plasma cells. This humoral immune response is suppressed by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds, which belong to the family of aryl hydrocarbon receptor (AhR) agonists.</p> <p>Results</p> <p>To achieve a better understanding of the immunotoxicity of AhR agonists and their associated health risks, we have used computer simulations to study the behavior of the gene regulatory network underlying B cell terminal differentiation. The core of this network consists of two coupled double-negative feedback loops involving transcriptional repressors Bcl-6, Blimp-1, and Pax5. Bifurcation analysis indicates that the feedback network can constitute a bistable system with two mutually exclusive transcriptional profiles corresponding to naïve B cells and plasma cells. Although individual B cells switch to the plasma cell state in an all-or-none fashion when stimulated by the polyclonal activator lipopolysaccharide (LPS), stochastic fluctuations in gene expression make the switching event probabilistic, leading to heterogeneous differentiation response among individual B cells. Moreover, stochastic gene expression renders the dose-response behavior of a population of B cells substantially graded, a result that is consistent with experimental observations. The steepness of the dose response curve for the number of plasma cells formed vs. LPS dose, as evaluated by the apparent Hill coefficient, is found to be inversely correlated to the noise level in Blimp-1 gene expression. Simulations illustrate how, through AhR-mediated repression of the AP-1 protein, TCDD reduces the probability of LPS-stimulated B cell differentiation. Interestingly, stochastic simulations predict that TCDD may destabilize the plasma cell state, possibly leading to a reversal to the B cell phenotype.</p> <p>Conclusion</p> <p>Our results suggest that stochasticity in gene expression, which renders a graded response at the cell population level, may have been exploited by the immune system to launch humoral immune response of a magnitude appropriately tuned to the antigen dose. In addition to suppressing the initiation of the humoral immune response, dioxin-like compounds may also disrupt the maintenance of the acquired immunity.</p

    Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance

    Get PDF
    γδ T cells are considered to be innate-like lymphocytes that respond rapidly to stress without clonal selection and differentiation. Here we use next-generation sequencing to probe how this paradigm relates to human Vδ2neg T cells, implicated in responses to viral infection and cancer. The prevalent Vδ1 T cell receptor (TCR) repertoire is private and initially unfocused in cord blood, typically becoming strongly focused on a few high-frequency clonotypes by adulthood. Clonal expansions have differentiated from a naive to effector phenotype associated with CD27 downregulation, retaining proliferative capacity and TCR sensitivity, displaying increased cytotoxic markers and altered homing capabilities, and remaining relatively stable over time. Contrastingly, Vδ2+ T cells express semi-invariant TCRs, which are present at birth and shared between individuals. Human Vδ1+ T cells have therefore evolved a distinct biology from the Vδ2+ subset, involving a central, personalized role for the γδ TCR in directing a highly adaptive yet unconventional form of immune surveillance

    Gammaherpesvirus-Driven Plasma Cell Differentiation Regulates Virus Reactivation from Latently Infected B Lymphocytes

    Get PDF
    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by manipulating the cellular milieu to provide a reactivation competent environment

    An aberrant NOTCH2-BCR signaling axis in B cells from patients with chronic GVHD

    Get PDF
    B-cell receptor (BCR)-activated B cells contribute to pathogenesis in chronic graft-versus-host disease (cGVHD), a condition manifested by both B-cell autoreactivity and immune deficiency. We hypothesized that constitutive BCR activation precluded functional B-cell maturation in cGVHD. To address this, we examined BCR-NOTCH2 synergy because NOTCH has been shown to increase BCR responsiveness in normal mouse B cells. We conducted ex vivo activation and signaling assays of 30 primary samples from hematopoietic stem cell transplantation patients with and without cGVHD. Consistent with a molecular link between pathways, we found that BCR-NOTCH activation significantly increased the proximal BCR adapter protein BLNK. BCR-NOTCH activation also enabled persistent NOTCH2 surface expression, suggesting a positive feedback loop. Specific NOTCH2 blockade eliminated NOTCH-BCR activation and significantly altered NOTCH downstream targets and B-cell maturation/effector molecules. Examination of the molecular underpinnings of this “NOTCH2-BCR axis” in cGVHD revealed imbalanced expression of the transcription factors IRF4 and IRF8, each critical to B-cell differentiation and fate. All-trans retinoic acid (ATRA) increased IRF4 expression, restored the IRF4-to-IRF8 ratio, abrogated BCR-NOTCH hyperactivation, and reduced NOTCH2 expression in cGVHD B cells without compromising viability. ATRA-treated cGVHD B cells had elevated TLR9 and PAX5, but not BLIMP1 (a gene-expression pattern associated with mature follicular B cells) and also attained increased cytosine guanine dinucleotide responsiveness. Together, we reveal a mechanistic link between NOTCH2 activation and robust BCR responses to otherwise suboptimal amounts of surrogate antigen. Our findings suggest that peripheral B cells in cGVHD patients can be pharmacologically directed from hyperactivation toward maturity

    Functionally Distinct Subpopulations of CpG-Activated Memory B Cells

    Get PDF
    During the human B cell (Bc) recall response, rapid cell division results in multiple Bc subpopulations. The TLR-9 agonist CpG oligodeoxynucleotide, combined with cytokines, causes Bc activation and division in vitro and increased CD27 surface expression in a sub-population of Bc. We hypothesized that the proliferating CD27lo subpopulation, which has a lower frequency of antibody-secreting cells (ASC) than CD27hi plasmablasts, provides alternative functions such as cytokine secretion, costimulation, or antigen presentation. We performed genome-wide transcriptional analysis of CpG activated Bc sorted into undivided, proliferating CD27lo and proliferating CD27hi subpopulations. Our data supported an alternative hypothesis, that CD27lo cells are a transient pre-plasmablast population, expressing genes associated with Bc receptor editing. Undivided cells had an active transcriptional program of non-ASC B cell functions, including cytokine secretion and costimulation, suggesting a link between innate and adaptive Bc responses. Transcriptome analysis suggested a gene regulatory network for CD27lo and CD27hi Bc differentiation
    corecore