44 research outputs found

    Tradeoff methods in multiobjective insensitive design of airplane control systems

    Get PDF
    The latest results of an ongoing study of computer-aided design of airplane control systems are given. Constrained minimization algorithms are used, with the design objectives in the constraint vector. The concept of Pareto optimiality is briefly reviewed. It is shown how an experienced designer can use it to find designs which are well-balanced in all objectives. Then the problem of finding designs which are insensitive to uncertainty in system parameters are discussed, introducing a probabilistic vector definition of sensitivity which is consistent with the deterministic Pareto optimal problem. Insensitivity is important in any practical design, but it is particularly important in the design of feedback control systems, since it is considered to be the most important distinctive property of feedback control. Methods of tradeoff between deterministic and stochastic-insensitive (SI) design are described, and tradeoff design results are presented for the example of the a Shuttle lateral stability augmentation system. This example is used because careful studies have been made of the uncertainty in Shuttle aerodynamics. Finally, since accurate statistics of uncertain parameters are usually not available, the effects of crude statistical models on SI designs are examined

    Pseudosteady-state analysis of nonlinear aircraft maneuvers

    Get PDF
    An analytical method was developed for studying the combined effects of rotational coupling and nonlinear aerodynamics on aircraft response for specified control inputs. The method involves the simultaneous solution of two nonlinear equations which are functions of angle attack, roll rate, and control inputs. The method was applied to a number of maneuvers for a fighter-type aircraft. Time history responses verified the usefulness of the analysis for predicting a variety of response characteristics caused by interacting nonlinear aerodynamic and inertial effects, including spin conditions

    Dynamic Stability and Control Problems of Piloted Reentry from Lunar Missions

    Get PDF
    A fixed-base simulator investigation has been made of stability and control problems during piloted reentry from lunar missions. Reentries were made within constraints of acceleration and skipping, in which the pilot was given simulated navigation tasks of altitude and heading angle commands. Vehicles considered included a blunt-face, high-drag capsule, and a low-drag lifting cone, each of which had a trim lift-drag ratio of 0.5. With the provision of three-axis automatic damping, both vehicles were easily controlled through reentry after a brief pilot-training period. With all dampers out, safe reentries could be made and both vehicles were rated satisfactory for emergency operation. In damper-failure conditions resulting in inadequate Dutch roll damping, the lifting-cone vehicle exhibited control problems due to excessive dihedral effect and oscillatory acceleration effects
    corecore