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This talk presents the latest results of an ongoing study of computer-
aided design of airplane control systems, which is based on satisfying
requirements on multiple objectives. Constrained minimization algorithms
are used, with the design objectives in the constraint vector [I]. We
briefly review the concept of Pareto optimality and showhow an experienced
designer can use it to find designs which are well-balanced in all objec-
tives [2,3]. Then we will discuss the problem of finding designs which are
insensitive to uncertainty in system parameters, introducing a probabil-
istic vector definition of sensitivity which is consistent with the
deterministic Pareto optimal problem [4]. Insensitivity is important in
any practical design, but it is particularly important in the design of
feedback control systems, since it is considered to be the most important
distinctive property of feedback control. Methods of tradeoff between
deterministic and stochastic-insensitive (SI) design are described, and
tradeoff design results are presented for the example of a Shuttle lateral
stabilityaugmentation system. This example is used because careful
studies have been madeof the uncertainty in Shuttle aerodynamics [5].
Finally, since accurate statistics of uncertain parameters are usually not
available, the effects of crude statistical models on SI designs are
examined.

OUTLINE

• REVIEW PARETO-OPTIMALMULTIOBJECTIVE DETERMINISTIC AND
STOCHASTIC-INSENSITIVE (SI) DESIGN.

• FORMULATEMETHODSOF TRADEOFFBETWEENDETERMINISTIC AND
STOCHASTIC-IN SENSITIVE DESIGN.

• DISCUSS TRADEOFFDESIGN RESULTSFOR SHUTTLELATERAL STABILITY
AUGMENTATIONSYSTEMEXAMPLE.

• EXAMINE EFFECTSOF INACCURATE STATISTICAL MODELSON
STOCHASTIC-INSENSITIVE DESIGN.
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MULTIOBJECTIVE DESIGN BY CONSTRAINED MINIMIZATION

The Pareto-optimal formulation of multiobjective design is not an

optimization method in the usual sense, since it does not determine a

unique solution. Pareto-optimal solutions comprise that portion of the

boundary of the achievable domain which is noninferior to all others in

the sense that every other solution must be worse in at least one

objective. In the literature on multiobjective optimization it is

generally assumed that some higher-level "decision maker's" logic exists

which can lead to an optimal solution. We assume, to the contrary, that no

optimal solution exists for practical multiobjective design problems. Our

Pareto-optimal algorithm is a valuable tool for the designer, since it

enables the computer to calculate example Pareto-optimal solutions using a

constrained minimization algorithm. However, the quality of the design

depends on critical decisions made by the designer, who must choose the

objective functions and values of associated scaling parameters which lead

to solutions which are well-balanced in the disparate objectives, control

the tradeoff iterations, and choose the final design. Rather than seeking

some undefinable optimization index for complex systems, the design process

is based on whatever computable objectives the designer considers

important, with consideration of computational cost subordinated to the

designer's judgment.

• PARETO-OPTIMAL FORMULATION

• THERE IS NO OPTIMAL SOLUTION

• COMPUTER CALCULATES EXAMPLE PARETO-OPTIMAL SOLUTIONS USING

CONSTRAINED MINIMIZATION ALGORITHM

• DESIGNER INTERACTION IS ESSENTIAL

• CHOOSES AND SCALES OBJECTIVES

• CONTROLS TRADEOFF ITERATIONS

• CHOOSES FINAL DESIGN
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DETERMINISTIC PARETO-OPTIMAL ALGORITHM

In this figure we present the constrained minimization formulation

which leads to the example Pareto-optimal designs. Let z be the vector

of design variables, q a scalar dummy variable, and f(z) the vector of

objective functions, and let g(z) _ 0 represent a vector of auxilliary

constraints. Then for arbitrary vectors a and b (with bj > 0),
solution of the constrained minimization problem on the first line leads to

a design on the boundary of the achievable domain which is at least locally

Pareto optimal. It is well known that this minimization problem is equiva-

lent to the min-max problem on the second line. The particular solution

obtained depends on the choice of a and b. Suppose the designer chooses

for aj values of the objectives which he considers marginally accept-

able, and another set of very desirable objectives, aD.. Then

defining b = a - aD should yield a solution well balanced in the

objectives, since a and aD have been so chosen. This method, known

as the "Goal Attainment Method" [6], is illustrated in the sketch. The

cross-hatched curve indicates the boundary of the achievable domain in

objective space, and the part between the cross-hatched bars is the Pareto

domain. At any iteration the constraints on f are at (a + qb). As q

is minimized the constraints move toward the boundary, and the solution is

forced to the deterministic optimal, fD*, corresponding to the minimum

_D*" The line joining fD* and a plays an important role in the
tradeoff formulations.

f2_

AOHEVABLE  b

+n b

SOLUTI ONS

MINq s.t. f(z)_<a + qbAND g(z)=< 0
z,q

F,,,z,o1EQUIVALENT TO: MIN MAX b. > 0
z J i -i ' J

GOAL ATTAINMENT: b = a - aD

f!
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TRADEOFFSIN STOCHASTIC-INSENSITIVEDESIGN

Wenow formulate the SI design algorithm and two tradeoff methods.
The designer must specify a vector, y, of parameters with significant
uncertainties and their probability distributions. Then the objective
functions are f(z,y), and the stochastic sensitivity vector, s(z), is
defined by the probabilities that specified requirements will be violated;
i.e., that fj(z,y) >%, where _x is a vector of requirement values.

Since this definition is only useful when if_ > f , it is desirable toD. '
3

solve the deterministic problem first. Defining the Pareto-optimal SI
design as that which minimizes the maximumsensitivity, the constrained
minimization algorithm takes the form shown. Computational problems will
be discussed later, but it is worth noting that insensitive design does not
require accurate calculation of the probabilities.

Both tradeoff methods use a scalar parameter to vary a vector
inequality along the line of varying constraints shownon the sketch for
the deterministic design. For _x fD*, the SI designs must be very like
the deterministic. Introducing a scalar parameter, _x, and defining _)
as in Method I, _ 1 gives deterministic-like solutions, and decreasing
_x provides a sort of tradeoff procedure, with increasing emphasis on
insensitive design. Method 2 is a more precise tradeoff. Here _x is
fixed at a value giving insensitive design, and constraints on nominal
objectives, T, are varied in a similar manner giving a tradeoff between
sensitivity and nominal values of objectives.

PARETO-OPTIMAL STOCHASTIC-INSENSITIVE DESIGN (SI)

DEFINE: s(z) A PROB [f(z,y) > f'] f" > fd = a + rldb
= y '

MIN n S.T. s(z) < <= rl, g(z) = 0

z, rl

TRADEOFF METHODS IN SI DESIGN

1. VARY f WITH SCALAR _.

f(?) =a + % rlb

o VARY CONSTRAINTS ON NOMINAL f-VALUES

FIX f" AND CONSTRAIN f(z,y-)_ f(z) =a+¥< qdb
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DESCRIPTIONOFEXAMPLECASE

The example case is design of a lateral stability augmentation system
(SAS) for Shuttle entry at M = 2.5. The linearized lateral response
equations are 4th order. System states are sideslip angle (B), yaw
rate (r), roll rate (p) and bank angle (¢). Controls are aileron and
rudder. The control law has 6 feedback gains (SAS design does not require
bank angle feedback) and 2 feedforward gains from the pilot's stick input
(Sap) to the controls. The general design objective is to obtain rapid,
stable roll response to the stick input, with small sideslip. This example
was chosen because statistical uncertainties in Shuttle aerodynamics have
been carefully studied, and at M = 2.5 these uncertainties have been
found to cause unacceptable variation in lateral response using aerodynamic
controls [5]. Nevertheless, in the example we use only aerodynamic con-
trois. The design parameter vector z is comprised of the 8 gains. The
uncertain parameter vector y contains all 6 aerodynamic control effec-
tiveness coefficients and the 3 sideslip coefficients. (The @-equation is
kinematic and contains no aerodynamic effects.) Uncertainty in control
effectiveness will clearly have a strong effect on control system design,
and lateral response is sensitive to the sideslip coefficients. In
stability axes the standard deviations of the 3 types of coefficients are
fairly consistent, and approximate values are shownfor sideslip (All) ,
aileron (Bil) and rudder (Bi2) coefficients. Rudder effectiveness is
most uncertain. The y-statistics are considered gaussian and include
correlation estimates.

k = Ax + Bu, xT = (13,r, p, (p), u T = (8a, Or)

°olIc'lu Kx + C Sap, K A__[KII KI2 KI3 , C =
LK21 K22 K23 2

z-VECTOR: 8 CONTROL SYSTEM GAINS

y-VECTOR: 6 CONTROL EFFECTIVENESS

DERIVATIVES (Ail)

o -VALUES (M = 2..5):
Y o(Ail) = 14°1o,

o(B ) = 20%
i2

(Bij) AND 3

o(Bil) = 12%,

SIDESLIP (13)
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DESIGNOBJECTIVESFORSHUTTLELATERALSAS

In this study, Ii deterministic design objectives are considered.
Generally, these are based on military handling-qualities requirements for
large transports. Stability is a basic requirement, and the 4 character-
istic roots must be considered separately because the requirements in the
various modesdiffer. The bank angle achieved in 6 seconds is the speed of
response objective. Decoupling of the rolling motion from yaw-sideslip is

Iachieved by keeping the peak sideslip small and _/_d , a ratio of
coefficients in the roll transfer function, near unmty. For the Shuttle,

small sideslip is also a heat-load requirement. It is always desirable to

keep control effort small. Since the natural stability of the Shuttle is

inadequate, it is clear that saturation in control deflection must be

avoided. Rate saturation can lead to violent nonlinear instability.

Therefore, the objectives of minimizing the peak control deflections and

rates are included. Finally, the sensitivities of the 11 objectives, as

previously defined, are also included as objectives. Although the

functions f(z,y) are nonlinear in y, the stochastic sensitivities were

first calculated using a linear-gaussian assumption. These probabilities

were checked using a Monte Carlo program, and all but the peak value

probabilities were acceptably accurate. Acceptable accuracy was obtained

by replacing the probability of violation for the maximum peak by the worst

probability for any pair of peaks, using a bivariate gaussian routine.

These approximate probabilities are used as the sensitivity functions in

the tradeoff studies.

CATEGORY OBJECTIVE

DETERMINISTIC, f-j (z):

STABILITY

SPEEDOF RESPONSE

DECOUPLING

CONTROLEFFORT

CHARACTERISTIC ROOTS (4)

BANK ANGLE IN .6 SECONDS (I)

PEAK SIDESLIP AND _#
PEAK MAGNITUDES AND RATES (4)

STOCHASTIC SENSITIVITIES, sj(z):

PROBABILITIES OF VIOLATING

f-REQUIREMENTS PROB Ifj(z,y)> f'jlY (II)
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TRADEOFFVARYING/_/_)

This figure shows how the sensitivity of the control system varies for

the simpler tradeoff method, varying the value of _. The 4 solid curves

give Monte Carlo results for SI designs with _ values at _'= 0, .2, .4

and .6. The Monte Carlo method uses the nonlinear objective functions, so

that these probabilities are a more realistic estimate of the sensitivities

obtainable using the linear-gaussian approximation in the SI program.

Decreasing values of design T give designs with more emphasis on insensi-

tivity. The heavy dot on each curve shows the Monte Carlo sensitivity at

the design value of _. Since the probability of violation depends on _,

the curve shows the sensitivity variation with _, to give a more complete

picture of the sensitivity properties. Each curve can be thought of as a

sort of vector cumulative distribution function, showing how the worst

Pj increases from 0 to I as _ increases• The curves are not smooth,

b_cause different P. become worst as _ varies For comparison, thej
calculated optimal sensitivities and the Monte Carlo sensitivity values for

the deterministic design are also shown. Although the Monte Carlo sensi-

tivities for the 4 SI designs are much larger than the calculated values,

comparison with the deterministic results shows that the SI designs are an

order of magnitude less likely to have bad values of the objective

functions. The usefulness of the probability approximation appears

questionable for desi_n_< 0.4. For example, at _= 0 the Monte Carlo

sensitivity for the "T'= 0 design is somewhat larger than those for the

_"= .2 or .4 designs. Nevertheless, it is clear that the approximation is

adequate to yield very significant decreases in sensitivity for SI designs

compared to deterministic designs.
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VARIATIONOFSI DESIGNSWITH/_/_)

It is interesting to examine how important properties of the design

vary as /_ varies from near unity (deterministic-like designs) to lower

values, with increasing emphasis on insensitivity. The variation of

4 typical control system gains is shown on the left, and the nominal values

of 3 typical objectives and their standard deviations on the right. There

are clearly significant changes in design properties in the transition from

deterministic designs to those emphasizing low sensitivity. However, as

noted in the previous figure, there seems little significant change in gains

or other system properties in designs for /_< 0.4. As seen on the right,

the main tradeoff penalty in nominal objectives for decreased sensitivity

is loss of speed of response, as indicated by the bank angle at 6 seconds,

_(6). Typical of the other objectives are the oscillatory damping ratio,

[, which is relatively unchanged, and the damping in roll, I_RI, which
increases. Note that 2 of the standard deviations decrease for'the insen-

sitive designs, but o X actually increases. This is permitted because

of the large increase in ]_RI- The computer finds gains to meet the

varying probability constraints, with freedom to use whatever combinations
I . i

of f-values and o-values are required.

4

GAINS 3-

2-

1

0
I
.2

-K12

.4 .6 .8 1.0

T

2.4-

NOMINAL 1.6

VALUES

AND

¢ (6)130

_ _R I

0 .2 .4 .6 .8 1.0

T
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TRADEOFFVARYINGCONSTRAINTSON f

This figure presents Monte Carlo results of the more precise tradeoff
between insensitivity and nominal values of objectives. Starting with the
SI design at _= 0 as the unconstrained design emphasizing insensitivity,
increasingly stringent constraints are imposed on the nominal values by
varying _ in T(z) _ a + TqD*b. The probability of violation for
the constrained designs is shownin the solid curves. Although this method
gives more precise control of the values of _j obtained in each SI
design, this set of solutions seemssimilar to the set obtained by simply
varying _. In the tradeoff varying _, there was a significant increase
in the probability of violations at low _ between designs at _ .4
and _= .6. Here the corresponding increase in sensitivity (i.e., the
probability of bad objective values) occurs between the designs for T = .6
and T = .8. In problems where the probabilities can be calculated accu-
rately (probabilistic design rather than insensitive design), this more
precise methodmight be preferred, in spite of the added computational
burden of adding the hard constraints. Also, there is a certain logical
appeal to constraining the nominal objectives to good values while minimiz-
ing the probability that the objectives will be worse than marginally
acceptable. For our applications, however, accurate statistics are not
obtainable, and the simpler method seemspreferable.

PROBABILITY
OF

V IOLATION

i0 -I
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I0
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_ DESIGN ? = 0
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EFFECTS OF CRUDE STATISTICAL MODEL ON SI DESIGN

In practice, inaccuracy in f-statistics resulting from the linear

assumption is likely to be dominated by inaccuracy of the input values of

the y-statistics. The statistics for the Shuttle example are more accurate

and detailed than would usually be available for control system design. To

investigate the effects of using a cruder estimate of the y-statistics on

SI design, it was assumed that the sideslip, aileron and rudder

coefficients had standard deviations equal to 15%, 15% and 20% of their

nominal values, respectively, with no correlations. These crude statistics

were used for SI design at /_= 0.4, and this design is compared with the

original desig_ at /i_= 0.4 and the deterministic design. The figure

shows Monte Carlo probabilities based on the Shuttle statistics. The

curves are cumulative distribution functions for 4(6), the objective which

always shows a large penalty in expected value in SI designs, and peak

_r, which is always critical in the calculated probabilities for the SI

design. The simplified input statistics give an SI design which has the

same basic properties and approximately the same sensitivity as obtained

with the more accurate statistics. Although the effectiveness of the SI

design does not seem to require an accurate statistical model, accurate

calculation of the probabilities does require accuracy of the statistical

model. For both SI designs, the simplified statistics predict much larger

probabilities of violation than the accurate statistics, and it was found

that almost all the discrepancy was caused by neglecting the y-correlations.
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NOMINAL AND OFF-NOMINAL RESPONSES FOR 3 SI DESIGNS

NO CONTROL LIMITING

Although statistical distribution curves are the best way to compare

designs for sensitivity to off-nominal parameters, simulated time histories

of off-nominal responses are also useful. The Monte Carlo random set of

responses for each control system was ranked using a weighted sum of viola-

tions of desired objective values, and time histories of nominal and 5

off-nominal responses at the 99th percentile for 3 SI designs are compared

in this figure. The solid curves show the responses of the nominal system

and the broken curves are the off-nominal responses. These cases are from

the set shown in the tradeoff varying /_, in which it was noted that there is

a significant increase in the probability of bad objective values for

design at /_ 0.6. This increased sensitivity is shown here by the

increase in scatter of the off-nominal responses for the design at

/_= 0.6. The tendency for decreased nominal speed of response for the less

sensitive designs is evident in the roll rate responses, p(t), and the

tendency for large peak values of rudder and rudder rate in the off-nominal

responses is evident in the 6r(t) responses. In fact, the /_= 0.6

off-nominal responses all violate the rudder rate limit of 12°/sec. The

next figure includes the control limits in the integration routine to show

the destabilizing effect of rate limiting.
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NOMINALANDOFF-NOMINALRESPONSESFOR3 SI DESIGNS

INCLUDESCONTROLLIMITING

This figure shows the importance of using peaks in control defle_:tions
and rates as design objectives whenit is likely that control limiting may
occur. Deflection limiting is dangerouswhen the uncontrolled airplane is
unstable, but the nonlinear delays introduced by rate limiting can cause
violent instability in an inherently stable system, as shownin these
responses for _x= 0.6. Although the SI design method calculates only the
linear responses, the designer can control the probability that the peaks
will violate the control limits, as shownin the results for _x= 0
and 0.4. In this case the aj values for control peaks were chosen at
the limiting values and the aD. values were 20%below the limits.
The probabilities at _x= 0 are3the probabilities that limiting will occur
in the linear responses, and keeping these low implies that the probability
of control-limiting instability will be low.
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CONCLUDING REMARKS

The Pareto-optimal stochastic insensitive design method defines a

vector sensitivity which is related in a very natural way to a set of

objectives chosen by an experienced designer. The designer must also make

important decisions to formulate the constrained minimization algorithm for

obtaining Pareto-optimal insensitive designs which are well balanced in the

objectives and for trading off between insensitivity and nominal values.

The designer, not the computer, makes the critical decisions which deter-

mine the quality of the design. The effectiveness of the method depends on

the designer's judgment, but this makes it easy for him to interact with

the program.

The main conclusions of this study are listed on the figure. The SI

method yields control system designs with very significant decreases in

sensitivity to parameter uncertainty. The effectiveness of the method does

not depend on having an accurate statistical model. The tradeoff studies

show that there are distinct differences between designs emphasizing insen-

sitivity and deterministic designs. For example, there are large gain

changes as emphasis on insensitivity increases. The two tradeoff methods

are both effective in compromising between insensitivity and nominal values

of objectives. Although the method utilizes only linear response calcula-

tions, it produces designs which are less likely to encounter nonlinear

control-limiting instabilities. Finally, in the example case, the main

penalty for achieving insensitivity was decreased nominal speed of

response. It will be interesting to see if further study shows this

to be a general property of insensitive control system designs.

STOCHASTIC-INSENSITIVE DESIGN GIVES A SIGNIFICANT DECREASE IN

SENSITIVITY TO PARAMETER UNCERTAINTY IN SPITE OF INACCURACY OF

CALCULATED PROBABILITIES.

TRADEOFF STUDIES SHOW THAT SI DESIGNS ARE DISTINCTLY DIFFERENT

FROM DETERMINISTIC DESIGNS.

SEVERAL EFFECTIVE METHODS WERE DEVELOPED FOR OBTAINING DESIGNS

WHICH COMPROMISE BETWEEN INSENSITIVITY AND NOMINAL OBJECTIVE

VALUES.

INSENSITIVE DESIGN CAN BE ESPECIALLY EFFECTIVE WHEN CONTROL

LIMITING IS A PROBLEM.

IN THE SHUTTLE LATERAL SAS EXAMPLE, THE MAIN PENALTY FOR
ACHIEVING INSENSITIVE DESIGNS WAS REDUCED VALUE OF NOMINAL
RESPONSE SPEED.
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