38 research outputs found

    Quantum chromodynamics with advanced computing

    Get PDF
    We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.Comment: 17 pp. Featured presentation at Scientific Discovery with Advanced Computing, July 13-17, Seattl

    The paradigm of the area law and the structure of transversal and longitudinal lightfront degrees of freedom

    Full text link
    It is shown that an algebraically defined holographic projection of a QFT onto the lightfront changes the local quantum properties in a very drastic way. The expected ubiquitous vacuum polarization characteristic of QFT is confined to the lightray (longitudinal) direction, whereas operators whose localization is transversely separated are completely free of vacuum correlations. This unexpected ''transverse return to QM'' combined with the rather universal nature of the strongly longitudinal correlated vacuum correlations (which turn out to be described by rather kinematical chiral theories) leads to a d-2 dimensional area structure of the d-1 dimensional lightfront theory. An additive transcription in terms of an appropriately defined entropy related to the vacuum restricted to the horizon is proposed and its model independent universality aspects which permit its interpretation as a quantum candidate for Bekenstein's area law are discussed. The transverse tensor product foliation structure of lightfront degrees of freedom is essential for the simplifying aspects of the algebraic lightcone holography. Key-words: Quantum field theory; Mathematical physics, Quantum gravityComment: 16 pages latex, identical to version published in JPA: Math. Gen. 35 (2002) 9165-918

    A generalized bag-like boundary condition for fields with arbitrary spin

    Get PDF
    Boundary conditions (BCs) for the Maxwell and Dirac fields at material surfaces are widely-used and physically well-motivated, but do not appear to have been generalized to deal with higher spin fields. As a result there is no clear prescription as to which BCs should be selected in order to obtain physically-relevant results pertaining to confined higher spin fields. This lack of understanding is significant given that boundary-dependent phenomena are ubiquitous across physics, a prominent example being the Casimir effect. Here, we use the two-spinor calculus formalism to present a unified treatment of BCs routinely employed in the treatment of spin-1/2 and spin-1 fields. We then use this unification to obtain a BC that can be applied to massless fields of any spin, including the spin-2 graviton, and its supersymmetric partner the spin-3/2 gravitino

    Heuristic Models of Two-Fermion Relativistic Systems with Field-Type Interaction

    Get PDF
    We use the chain of simple heuristic expedients to obtain perturbative and exactly solvable relativistic spectra for a family of two-fermionic bound systems with Coulomb-like interaction. In the case of electromagnetic interaction the spectrum coincides up to the second order in a coupling constant with that following from the quantum electrodynamics. Discrepancy occurs only for S-states which is the well-known difficulty in the bound-state problem. The confinement interaction is considered too. PACS number(s): 03.65.Pm, 03.65.Ge, 12.39.PnComment: 16 pages, LaTeX 2.0

    Consistent histories of systems and measurements in spacetime

    Full text link
    Traditional interpretations of quantum theory in terms of wave function collapse are particularly unappealing when considering the universe as a whole, where there is no clean separation between classical observer and quantum system and where the description is inherently relativistic. As an alternative, the consistent histories approach provides an attractive "no collapse" interpretation of quantum physics. Consistent histories can also be linked to path-integral formulations that may be readily generalized to the relativistic case. A previous paper described how, in such a relativistic spacetime path formalism, the quantum history of the universe could be considered to be an eignestate of the measurements made within it. However, two important topics were not addressed in detail there: a model of measurement processes in the context of quantum histories in spacetime and a justification for why the probabilities for each possible cosmological eigenstate should follow Born's rule. The present paper addresses these topics by showing how Zurek's concepts of einselection and envariance can be applied in the context of relativistic spacetime and quantum histories. The result is a model of systems and subsystems within the universe and their interaction with each other and their environment.Comment: RevTeX 4; 37 pages; v2 is a revision in response to reviewer comments, connecting the discussion in the paper more closely to consistent history concepts; v3 has minor editorial corrections; accepted for publication in Foundations of Physics; v4 has a couple minor typographical correction

    Signatures of Quark-Gluon-Plasma formation in high energy heavy-ion collisions: A critical review

    Full text link
    A critical review on signatures of Quark-Gluon-Plasma formation is given and the current (1998) experimental status is discussed. After giving an introduction to the properties of QCD matter in both, equilibrium- and non-equilibrium theories, we focus on observables which may yield experimental evidence for QGP formation. For each individual observable the discussion is divided into three sections: first the connection between the respective observable and QGP formation in terms of the underlying theoretical concepts is given, then the relevant experimental results are reviewed and finally the current status concerning the interpretation of both, theory and experiment, is discussed. A comprehensive summary including an outlook towards RHIC is given in the final section.Comment: Topical review, submitted to Journal of Physics G: 68 pages, including 39 figures (revised version: only minor modifications, some references added

    Confined quantum fields under the influence of a uniform magnetic field

    Full text link
    We investigate the influence of a uniform magnetic field on the zero-point energy of charged fields of two types, namely, a massive charged scalar field under Dirichlet boundary conditions and a massive fermion field under MIT boundary conditions. For the first, exact results are obtained, in terms of exponentially convergent functions, and for the second, the limits for small and for large mass are analytically obtained too. Coincidence with previously known, partial result serves as a check of the procedure. For the general case in the second situation --a rather involved one-- a precise numerical analysis is performed.Comment: 17 pages, 5 figure
    corecore