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Abstract

Boundary conditions (BCs) for the Maxwell and Dirac fields at material surfaces are widely-used and
physically well-motivated, but do not appear to have been generalized to deal with higher spin fields.
Asaresult there is no clear prescription as to which BCs should be selected in order to obtain
physically-relevant results pertaining to confined higher spin fields. This lack of understanding is
significant given that boundary-dependent phenomena are ubiquitous across physics, a prominent
example being the Casimir effect. Here, we use the two-spinor calculus formalism to present a unified
treatment of BCs routinely employed in the treatment of spin-1/2 and spin-1 fields. We then use this
unification to obtain a BC that can be applied to massless fields of any spin, including the spin-2
graviton, and its supersymmetric partner the spin-3/2 gravitino.

The coupling of a quantized field to matter causes the spectrum of its vacuum fluctuations to change. The range
of resulting phenomena includes what are variously known as Casimir forces, energies and pressures. The simple
case of two perfectly reflecting, infinite, parallel plates, that impose boundary conditions (BCs) on the Maxwell
field was investigated by Casimir in [1]. Casimir’s seminal paper has since resulted in a wide range of extensions,
generalizations and experimental confirmations over the last half-century or so [2-7]. This has led, for example,
to new constraints on hypothetical Yukawa corrections to Newtonian gravity [8]. Casimir’s relatively simple and
intuitive calculation has provided an enormously fruitful link between real-world experiments and the abstract
discipline of quantum field theory. In fact, boundary-dependent effects are often cited in standard quantum field
theory textbooks as the primary justification for the reality of vacuum fluctuations. Such interpretations
however, are not without controversy [9]. Boundary-dependent vacuum forces are not specific to
electromagnetism, and are in fact a general feature of quantized fields. Here we provide a unified and physically
well-motivated treatment of the effects that perfectly reflecting material boundaries have on any quantum field.
A striking example of non-electromagnetic Casimir effects can be found in nuclear physics, wherein early
attempts to model the nucleon without considering BCs at its surface ran into a variety of problems [ 10]. Many
of these problems were solved by the introduction of the ‘bag model’ [11], which describes a nucleon as a
collection of free massless quarks” confined to a region of space (the ‘bag’), with a postulated BC that governs
their behavior at the surface (see figure 1). This model, subject to sensible choices of a small number of free
parameters, correctly predicts much of the physics of the nucleon [10]. The boundary-dependent vacuum
contribution to the energy (the Casimir energy) has important consequences for the stability of the bag [12—14].
This further emphasizes the importance of using physically-motivated BCs. Another example of the need to
impose physical BCs on fermionic fields is provided by graphene and carbon nanotubes, both of which are the
subject of intense contemporary interest. These structures support a two-dimensional gas of massless fermions
[15] and the resultant fermionic Casimir force has been found to have even a different sign depending on the
precise choice of BCs, namely periodic or anti-periodic [ 16]. Single carbon nanotubes have been proposed as
nanomechanical switches [17] whose failure modes may include stiction caused by Casimir forces [18].

This is justified because the energy scale associated with the nucleon radius is much larger than that associated with the mass of the quark.
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“Bag model” nucleon Parallel conducting plates

Figure 1. Schematic representation of the main idea of our work. We exploit a correspondence between the bag model of the nucleon
and the electromagnetic Casimir force between parallel conducting plates. This enables us to unify them and subsequently generalize
them in order to treat arbitrary spinor fields.

Given that Casimir effects associated with the Maxwell (spin-1) field and the Dirac (spin-1/2) field are of
experimental and theoretical interest, one is naturally led to the question as to whether the Casimir effect for
these fields can be calculated in a unified way. Since Casimir physics is essentially the study of BCs, can we
construct BCs that include those used for the spin-1/2 and spin-1 fields as special cases? Furthermore, can we
generalize this unified BC to one that applies to higher-spin fields? Answering these questions would
significantly advance our understanding of the physics of confined higher-spin fields. For example, in [19]
arbitrary BCs (periodic) are applied to the spin-3/2 field—no physical justification is attempted. Here we unify
the BCs usually employed in the treatment of spin-1/2 and spin-1 fields near perfect reflectors, and then develop
this unification in order to model the confinement of fields possessing arbitrary spin.

We will begin our treatment by outlining the BCs assumed within the bag model, i.e., those usually employed
in the treatment of massless spin-1/2 particles. In this model, one envisages a fermionic field confined to some
region of space that is surrounded by an impenetrable barrier. Thus, a physically reasonable constraint to impose
(which can also be motivated by an appropriate choice of Lagrangian [10, 20]) is that there be no particle current
across the surface;

(”uj”)|3 =0 j=dr'y, (1

where n,, is a spacelike unit four-vector normal to the surface defining the bag, and where we have employed the
summation convention for repeated upper and lower indices. Rather than using the usual notation  to denote
the Dirac adjoint y Ty® of y, we have used ¢ = y 'y in order to avoid confusion later on. The constraint (1) is
obeyedif y (x) = y satisfies

in,yfw =y X € B. (2)

This can be shown by multiplying equation (2) by ¢ from the left, and the Dirac adjoint of equation (2) by y
from the right. Adding these two quantities, one finds 2in, ¢py*y = 2in,j* = 0.This shows that the BC (2)
implies n1,,j# = 0, which is the constraint imposed in the bag model.

What about higher spins? It is well-known that the description of fields with arbitrary spin can be constructed
using elementary two-spinors via the so-called two-spinor calculus formalism [21-24]. This means that, for
example, the Maxwell field can be described on the same footing as the massless Dirac field. As a result, we should be
able to find a spin-1 analog of the constraint (1). Initially this might seem hopeless, because no local particle-current
exists for fields with spin greater than 1/2 [25]. However, we shall see that there is a natural adaptation of the Dirac-
field BC to the Maxwell field, which moreover coincides with the BC usually employed in the calculation of the
electromagnetic Casimir force. This allows us to generalize the BC (2) to fields with arbitrary spin.

The two-spinor calculus allows one to build irreducible representations of the universal covering group of
the homogeneous Lorentz group using two-dimensional complex symplectic vector spaces Sand S, where a bar
is used to denote the complex conjugate space. The space S is the pair (V, w), where Vis a two-dimensional
complex vector space and w is a complex symplectic (non-degenerate) form. Choosinga basis {f,} C V we can
write arbitrary elements (spinors) of Sand S as

wy=yf,esS y=yf,eS (3)

where we use bars rather than the more commonly used dots to distinguish between a spinor index and a
conjugate-spinor index. Furthermore we rely entirely on the different indices in order to distinguish between the
components of yrand . With these index conventions matrix operations become particularly simple. If a matrix
vhas elements v*” then we have the following representations

2
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ab ab T ba’ VT PN Vbﬁ, (4)

ve vt v e v vV eV
where T and T denote matrix transposition and Hermitian conjugation respectively. The symplectic form w is
used to raise and lower spinor indices. We adopt the convention that w,, = —@;, can only be used to lower an

index when the repeated index is in the first slot. Similarly @ only raises the index when the repeated index is in
the second slot. The same rules apply for barred indices, so altogether

Oayt =y, Oy =t oayt =y oy =yl (5)
We note that these identities imply the following identity for the contraction of a rank-# spin tensor with its dual
¢a1a2 an¢a1az s = (=1)" ¢a1a2 an¢am2 -l (6)

This means that for odd 7 (fermionic fields) the quantity ¢, ,, , ¢~ * isidentically zero.
The above ingredients allow one to write a spacetime tensor of rank (4, j) in terms of Hermitian matrices as

u o i = biby = bibiraa..aia;- -
™ ;Xbl...u]' =0 I(ilm -0 xﬁ,'alazzl ! l"'azq P a4 "Dyby...bibi (7)

where

ot = (I, 6%, 6" = (I, =o' (8)
with ¢’ the ith Pauli matrix. We have now laid out a formalism that we can use to describe fields of arbitrary spin.
This will eventually enable us to determine a unified physical BC applicable to any massless spinor field. We
begin this process by rewriting the right-helicity component of the Dirac currentin (1) as

saa

=0, = ©)
In terms of the two-spinor calculus formalism, the BC (2) for the right-helicity component becomes
nuotaap® =y, x € B. (10)

We can demonstrate that equation (10) implies 7,,j# = 0 by multiplying both sides by y* and using the identity
(6), which gives

nuot sy = yp? =0 x € B. (11)

This shows that equation (10) is indeed the two-spinor calculus version of the bag BC (2) for a right-helicity
spinor. A similar calculation holds for the left-helicity spinor.

The next-lowest spin field after the Dirac field (s = 1/2) is of course the Maxwell field (s = 1). Just as in our
discussion of the Dirac field, we will begin by casting the usual statements of the BCs (in this case given by
restrictions on the electric and magnetic fields E and B) in the language of two-spinor calculus. The
electromagnetic BC for a perfect conductor requires that n X E and n - B vanish at the surface. This in turn
implies that n - S also vanishes, where S = E X B is the Poynting vector. Using the Riemann-Silberstein (RS)
vector F = E + iB, the electromagnetic BCs can be written

Re [n X F] =0, Im[n-F] =0 X € B. (12)
We can assume without loss of generality that r1,, = (0, Z) so that the RS vector obeying the BCs (12) is
F = (iB,, iB,, E; ). (13)
Following [26], we now introduce the spin tensor ¢ such that
¢ = —F, + iE, o = F — iF, (14)
¢"' = E = ¢", bo1 = —E = ¢y (15)
¢"' = E + iE, ¢ii = —F — if, (16)

in terms of which (13) can be written as
" = boo» P =~y (17)
Using equation (7) we can write a symmetric tensor T as
TH = 643,6"5 T, (18)

where T s symmetric spin-tensor. If we define Taabb = abhab then TH in equation (18) is the familiar
electromagnetic energy—momentum tensor, with components

T = E2 + B2, T = 2(E x B) = 28", (19)
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In terms of T#* the constraint n - S becomes

nmT%=0 xeb, (20)
which for n, = (0, Z) can be written

n,TH =0 X € B. (21)

Comparing this with (1), we see that T#° plays the role of the Dirac current j* for the Maxwell field. The physical
constraint, analogous to (1), that we impose on the Maxwell field is therefore

n, TH = n,la”daaogb(/)‘ﬁ(ﬁ“b =0 X € B, (22)
which will necessarily hold if
nﬂnuaﬂfma”gb(ﬁ“h = ¢ X € B. (23)
We can easily demonstrate that the BC (23) implies the constraint (22) by again taking n,, = (0, z), so that the
BC becomes
2™ = ¢ X € B. (24)

Using the explicit form of the Pauli matrices, equation (24) immediately yields equation (17), which themselves
followed from having written the BCs (10) and (23) in terms of the RS vector.

The fact that the above procedure is exactly analogous to that for the Dirac field is remarkable and
unexpected. As already mentioned, no local particle-current exists for massless fields with spin greater than 1/2.
However, one of the few local observables associated with photons is their energy current, which is precisely the
quantity that naturally appears in the spin-1 constraint (22).

The generalization of the BC to arbitrary spinor fields is now clear. For spin-1/2 we write our generalized
bag-like BC

My My e Mgy, 011500, 6"% 0, 0 685 0, D2 =y o (25)
for x € B. Thisimplies [n,J* (m)]|z = 0 where
J*(m) = 6% 4,0,6%,0, - 02,0, ™ ™82 I (26)

is thelocal current for the spinor field concerned—the Dirac field has J# (1) = j*, the Maxwell field has
J*#(2) = T and so on. In terms of the spin-tensor ¢, the current .J is defined by

JOraariz - anin = ¢a1az...am¢d1ﬁz...dm. (27)
The BC (25) ensures that
[nﬂj”(m)]g =0. (28)
We can prove this by using the rules (5), which allow (25) to be written as
O G 410 @I G oy =y, (29)
Substituting this into n,, J# and using the explicit forms of the Pauli matrices along with the matrix

representation @ = ic?, we find

T (1) = (2176 6 S

’

= _(_1)m01a2u2' Gluma,'nl//gl/aémuml//a{azmum~ (30)
Using 6' = (6")" and relabelling the indices a; <> a; for i = 2, ..., m, thelastline of equation (30) is equal to
nﬂjﬂ (m) = (_1)m51a2a2’ Glama;”wul’...a,;,l//afaz...a",, (31)

which is the negative of the first line in equation (30). This proves that the BC (25) implies 1, J# (m) = 0 foran
arbitrary spin-m/2 field, meaning that it is indeed a generalized bag-like BC. This is the main result of our work.

As we have already noted, the identification of a physical current .7 for higher spin fields seems at first
problematic, due to the non-existence of alocal particle current for spin >1/2. We have in fact already tackled
this problem by adapting the spin-1/2 BCs to the spin-1 case. This enables us to inductively determine the
appropriate J for higher spin fields.

Particularly noteworthy is identification of 7 for the spin-2 field that describes linearized quantum gravity.
This field is most commonly described using a symmetric traceless tensor field h** that results from the first-order
expansion g" (u) = g" + uh™ + ... of the general metric tensor of curved spacetime. In this first-order
approximation, Einstein’s vacuum equations in terms of h** are equivalent to the correct relativistic wave equation

4
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for a massless spin-2 particle (the so-called graviton). The right and left-helicities of the graviton are described by
symmetric spin-tensors y** and y;_; respectively. These can be used to define the Bel-Robinson tensor, which
isa strong candidate for the gravitational version of a symmetric energy—-momentum tensor [23]. While it is well-
known that the gravitational field does not possess a unique local energy—momentum tensor, the Bel-Robinson
tensor T#*° possesses many of the properties usually associated with such objects, namely, total-symmetry,
tracelessness and certain positivity properties [23]. Itis also the natural spin-2 analog of the symmetric energy—
momentum tensor T+ of electrodynamics. The generalized BC in equation (25) therefore implies the vanishing of
thelocal current T#°%, Analogously to the currents encountered in the spin-1/2 and spin-1 cases, T#%° could be
viewed as a natural quantity in terms of which the physical BC should be specified for the spin-2 field.

A possible impact of our unified BC is the ability to transfer well-known techniques from electromagnetism
to fields with different spin. This could prove especially fruitful in extending our work to consideration of
imperfectly reflecting boundaries, as was done very recently in [27] for the particular case of the spin-2 graviton.

To conclude, we have reported the first unified treatment of physical (bag-like) BCs at perfect reflectors for
fields with arbitrary spin. This was achieved by writing well-known BCs for the Maxwell and massless Dirac
fields in a unified language, and then carrying out a natural generalization. The very existence of a unified BC for
the Maxwell and Dirac fields is a remarkable result on its own because of the fundamental differences between
the conserved currents for the two fields. However, we have shown that such a BC does exist—the unification of
two apparently disparate approaches within one self-consistent model is a satisfying result, but moreover the
unification proceeds in such a way that it can be naturally extended to find completely new bag-like BCs for fields
with any spin, meaning that our work opens up a whole landscape of study in confinement of higher-spin fields.
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