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Abstract
Boundary conditions (BCs) for theMaxwell andDirac fields atmaterial surfaces arewidely-used and
physically well-motivated, but do not appear to have been generalized to deal with higher spinfields.
As a result there is no clear prescription as towhich BCs should be selected in order to obtain
physically-relevant results pertaining to confined higher spinfields. This lack of understanding is
significant given that boundary-dependent phenomena are ubiquitous across physics, a prominent
example being theCasimir effect. Here, we use the two-spinor calculus formalism to present a unified
treatment of BCs routinely employed in the treatment of spin-1 2 and spin-1fields.We then use this
unification to obtain a BC that can be applied tomasslessfields of any spin, including the spin-2
graviton, and its supersymmetric partner the spin-3 2 gravitino.

The coupling of a quantized field tomatter causes the spectrumof its vacuumfluctuations to change. The range
of resulting phenomena includeswhat are variously known as Casimir forces, energies and pressures. The simple
case of two perfectly reflecting, infinite, parallel plates, that impose boundary conditions (BCs) on theMaxwell
fieldwas investigated byCasimir in [1]. Casimir’s seminal paper has since resulted in awide range of extensions,
generalizations and experimental confirmations over the last half-century or so [2–7]. This has led, for example,
to new constraints on hypothetical Yukawa corrections toNewtonian gravity [8]. Casimir’s relatively simple and
intuitive calculation has provided an enormously fruitful link between real-world experiments and the abstract
discipline of quantum field theory. In fact, boundary-dependent effects are often cited in standard quantum field
theory textbooks as the primary justification for the reality of vacuum fluctuations. Such interpretations
however, are notwithout controversy [9]. Boundary-dependent vacuum forces are not specific to
electromagnetism, and are in fact a general feature of quantizedfields. Herewe provide a unified and physically
well-motivated treatment of the effects that perfectly reflectingmaterial boundaries have on any quantum field.

A striking example of non-electromagnetic Casimir effects can be found in nuclear physics, wherein early
attempts tomodel the nucleonwithout considering BCs at its surface ran into a variety of problems [10].Many
of these problemswere solved by the introduction of the ‘bagmodel’ [11], which describes a nucleon as a
collection of freemassless quarks2 confined to a region of space (the ‘bag’), with a postulated BC that governs
their behavior at the surface (seefigure 1). Thismodel, subject to sensible choices of a small number of free
parameters, correctly predictsmuch of the physics of the nucleon [10]. The boundary-dependent vacuum
contribution to the energy (theCasimir energy) has important consequences for the stability of the bag [12–14].
This further emphasizes the importance of using physically-motivated BCs. Another example of the need to
impose physical BCs on fermionic fields is provided by graphene and carbon nanotubes, both of which are the
subject of intense contemporary interest. These structures support a two-dimensional gas ofmassless fermions
[15] and the resultant fermionic Casimir force has been found to have even a different sign depending on the
precise choice of BCs, namely periodic or anti-periodic [16]. Single carbon nanotubes have been proposed as
nanomechanical switches [17]whose failuremodesmay include stiction caused byCasimir forces [18].
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This is justified because the energy scale associatedwith the nucleon radius ismuch larger than that associatedwith themass of the quark.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/7/073012
mailto:a.stokes@leads.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/7/073012&domain=pdf&date_stamp=2015-07-09
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/7/073012&domain=pdf&date_stamp=2015-07-09
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Given that Casimir effects associatedwith theMaxwell (spin-1) field and theDirac (spin-1 2)field are of
experimental and theoretical interest, one is naturally led to the question as towhether theCasimir effect for
thesefields can be calculated in a unifiedway. Since Casimir physics is essentially the study of BCs, canwe
construct BCs that include those used for the spin-1 2 and spin-1fields as special cases? Furthermore, canwe
generalize this unified BC to one that applies to higher-spin fields? Answering these questions would
significantly advance our understanding of the physics of confined higher-spin fields. For example, in [19]
arbitrary BCs (periodic) are applied to the spin-3 2 field—no physical justification is attempted.Herewe unify
the BCs usually employed in the treatment of spin-1 2 and spin-1fields near perfect reflectors, and then develop
this unification in order tomodel the confinement offields possessing arbitrary spin.

Wewill begin our treatment by outlining the BCs assumedwithin the bagmodel, i.e., those usually employed
in the treatment ofmassless spin-1 2 particles. In thismodel, one envisages a fermionic field confined to some
region of space that is surrounded by an impenetrable barrier. Thus, a physically reasonable constraint to impose
(which can also bemotivated by an appropriate choice of Lagrangian [10, 20]) is that there be no particle current
across the surface;

( )n j j0 , (1)ϕγ ψ= =μ
μ μ μ


where nμ is a spacelike unit four-vector normal to the surface defining the bag, andwherewe have employed the
summation convention for repeated upper and lower indices. Rather than using the usual notation ψ̄ to denote
theDirac adjoint † 0ψ γ ofψ, we have used † 0ϕ ψ γ≡ in order to avoid confusion later on. The constraint (1) is
obeyed if x( )ψ ψ≡ satisfies

n xi . (2)γ ψ ψ= ∈μ
μ 

This can be shown bymultiplying equation (2) byϕ from the left, and theDirac adjoint of equation (2) byψ
from the right. Adding these two quantities, onefinds n n j2i 2i 0ϕγ ψ = =μ

μ
μ

μ . This shows that the BC (2)
implies n j 0=μ

μ , which is the constraint imposed in the bagmodel.
What about higher spins? It iswell-known that thedescriptionoffieldswith arbitrary spin canbe constructed

using elementary two-spinors via the so-called two-spinor calculus formalism[21–24]. Thismeans that, for
example, theMaxwellfield canbedescribedon the same footing as themasslessDiracfield.As a result,we shouldbe
able tofinda spin-1 analog of the constraint (1). Initially thismight seemhopeless, becauseno local particle-current
exists forfieldswith spin greater than1 2 [25].However,we shall see that there is a natural adaptationof theDirac-
fieldBC to theMaxwellfield,whichmoreover coincideswith theBCusually employed in the calculationof the
electromagneticCasimir force. This allowsus to generalize theBC(2) tofieldswith arbitrary spin.

The two-spinor calculus allows one to build irreducible representations of the universal covering group of
the homogeneous Lorentz group using two-dimensional complex symplectic vector spaces S and S̄, where a bar
is used to denote the complex conjugate space. The space S is the pair V( , )ω , whereV is a two-dimensional
complex vector space andω is a complex symplectic (non-degenerate) form.Choosing a basis f V{ }a ⊂ we can

write arbitrary elements (spinors) of S and S̄ as

f S f S¯ ¯, (3)a
a

a
a

¯
¯ψ ψ ψ ψ= ∈ = ∈

wherewe use bars rather than themore commonly used dots to distinguish between a spinor index and a
conjugate-spinor index. Furthermore we rely entirely on the different indices in order to distinguish between the
components ofψ and ψ̄ .With these index conventionsmatrix operations become particularly simple. If amatrix
vhas elements v ab thenwe have the following representations

Figure 1. Schematic representation of themain idea of ourwork.We exploit a correspondence between the bagmodel of the nucleon
and the electromagnetic Casimir force between parallel conducting plates. This enables us to unify them and subsequently generalize
them in order to treat arbitrary spinorfields.
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v v v v v v v v, ¯ , , , (4)ab ab ba ba¯ ¯ † ¯¯↔ ↔ ↔ ↔⊤

where ⊤ and † denotematrix transposition andHermitian conjugation respectively. The symplectic formω is
used to raise and lower spinor indices.We adopt the convention that ab baω ω= − can only be used to lower an

indexwhen the repeated index is in the first slot. Similarly abω only raises the indexwhen the repeated index is in
the second slot. The same rules apply for barred indices, so altogether

, , , . (5)ab
a

b
ab

b
a

ab
a

b
ab

b
a

¯ ¯ ¯
¯

¯ ¯
¯

¯ω ψ ψ ω ψ ψ ω ψ ψ ω ψ ψ= = = =

Wenote that these identities imply the following identity for the contraction of a rank-n spin tensor with its dual

( 1) . (6)a a a
a a a n

a a a
a a a

...
...

...
...

n
n

n
n

1 2
1 2

1 2
1 2ϕ ϕ ϕ ϕ= −

Thismeans that for odd n (fermionic fields) the quantity a a a
a a a

...
...

n
n

1 2
1 2ϕ ϕ is identically zero.

The above ingredients allowone towrite a spacetime tensor of rank (i, j) in terms ofHermitianmatrices as

T T... ˜ ... ˜ , (7)a a a a
b b b b a a a a

b b b b...
...

¯ ¯
¯ ¯ ¯ ... ¯ ¯ ... ¯

j
i

i i
i

i
i i i i

i i1
1

1 1
1

1
1 1 1 1

1 1σ σ σ σ=ν ν
μ μ μ μ

ν ν

where

( , ), ˜ ( , ) (8)i iσ σ σ σ= = −μ μ 

with iσ the ith Paulimatrix.We have now laid out a formalism that we can use to describe fields of arbitrary spin.
This will eventually enable us to determine a unified physical BC applicable to anymassless spinor field.We
begin this process by rewriting the right-helicity component of theDirac current in (1) as

j j j, . (9)aa
aa aa a a

¯
¯ ¯ ¯σ ψ ψ= ≡μ μ

In terms of the two-spinor calculus formalism, the BC (2) for the right-helicity component becomes

n x . (10)aa
a

a¯ ¯σ ψ ψ= ∈μ
μ 

Wecan demonstrate that equation (10) implies n j 0=μ
μ bymultiplying both sides by āψ and using the identity

(6), which gives

n x0 . (11)aa
a a

a
a

¯
¯

¯
¯σ ψ ψ ψ ψ= ≡ ∈μ

μ 
This shows that equation (10) is indeed the two-spinor calculus version of the bag BC (2) for a right-helicity
spinor. A similar calculation holds for the left-helicity spinor.

The next-lowest spin field after theDiracfield (s 1 2= ) is of course theMaxwell field (s = 1). Just as in our
discussion of theDiracfield, wewill begin by casting the usual statements of the BCs (in this case given by
restrictions on the electric andmagnetic fields E and B) in the language of two-spinor calculus. The
electromagnetic BC for a perfect conductor requires that n E× and n B· vanish at the surface. This in turn
implies that n S· also vanishes, where S E B= × is the Poynting vector. Using theRiemann–Silberstein (RS)
vector F E Bi≡ + , the electromagnetic BCs can bewritten

n F n F xRe [ ] 0, Im [ · ] 0 . (12)× = = ∈ 
Wecan assumewithout loss of generality that n z(0, ˆ)=μ so that the RS vector obeying the BCs (12) is

( )B B EF i , i , . (13)x y z=

Following [26], we now introduce the spin tensor abϕ such that

F F F Fi , ¯ i ¯ , (14)x y x y
00

0̄0̄ϕ ϕ= − + = −

F F, ¯ , (15)z z
01 10

0̄1̄ 1̄0̄ϕ ϕ ϕ ϕ= = = − =

F F F Fi , ¯ i ¯ , (16)x y x y
11

1̄1̄ϕ ϕ= + = − −

in terms of which (13) can bewritten as

, . (17)00
0̄0̄

01
0̄1̄ϕ ϕ ϕ ϕ= = −

Using equation (7) we canwrite a symmetric tensorT μν as

T T , (18)aa bb
aabb

¯ ¯ ¯ ¯σ σ=μν μ ν

whereT aabb¯ ¯
is a symmetric spin-tensor. If we defineT aabb ab ab¯ ¯ ¯ ¯ϕ ϕ= , thenT μν in equation (18) is the familiar

electromagnetic energy–momentum tensor, with components

T T SE B E B, 2( ) 2 . (19)i i i00 2 2 0= + = × =
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In terms ofT μν the constraint n S· becomes

n T x0 , (20)i
i0 = ∈ 

which for n z(0, ˆ)=μ can bewritten

n T x0 . (21)0 = ∈μ
μ 

Comparing this with (1), we see thatT 0μ plays the role of theDirac current j μ for theMaxwellfield. The physical
constraint, analogous to (1), that we impose on theMaxwellfield is therefore

n T n x0 , (22)aa bb
ab ab0

¯
0 ¯ ¯ ¯σ σ ϕ ϕ= = ∈μ

μ
μ

μ 
whichwill necessarily hold if

n n x . (23)aa bb
ab

ab¯ ¯ ¯ ¯σ σ ϕ ϕ= ∈μ ν
μ ν 

Wecan easily demonstrate that the BC (23) implies the constraint (22) by again taking n z(0, ˆ)=μ , so that the
BCbecomes

x . (24)aa bb
ab

ab
3

¯
3 ¯ ¯ ¯σ σ ϕ ϕ= ∈ 

Using the explicit formof the Paulimatrices, equation (24) immediately yields equation (17), which themselves
followed fromhavingwritten the BCs (10) and (23) in terms of the RS vector.

The fact that the above procedure is exactly analogous to that for theDirac field is remarkable and
unexpected. As alreadymentioned, no local particle-current exists formassless fields with spin greater than1 2.
However, one of the few local observables associatedwith photons is their energy current, which is precisely the
quantity that naturally appears in the spin-1 constraint (22).

The generalization of the BC to arbitrary spinor fields is now clear. For spin-m 2wewrite our generalized
bag-like BC

n n n... ... , (25)a a a a a a
a a a

a a a¯ ¯ ¯
...

¯ ¯ ... ¯m m m
m

m1 2 1 1
1

2 2
2 2 1 2

1 2
σ σ σ ϕ ϕ=μ μ μ

μ μ μ

for x ∈ . This implies n m[ ( )] 0∣ =μ
μ  where

m( ) ... (26)a a a a a a
a a a a a a

¯
0

¯
0

¯
... ¯ ¯ ... ¯

m m
m m

1 1 2 2
1 2 1 2σ σ σ ϕ ϕ=μ μ

is the local current for the spinorfield concerned—theDirac field has j(1) =μ μ , theMaxwellfield has
T(2) 0=μ μ and so on. In terms of the spin-tensorϕ, the current  is defined by

. (27)a a a a a a a a a a a a¯ ¯ ... ¯ ... ¯ ¯ ... ¯m m m m1 1 2 2 1 2 1 2ϕ ϕ≡
The BC (25) ensures that

n m( ) 0. (28)⎡⎣ ⎤⎦ =μ
μ 

Wecan prove this by using the rules (5), which allow (25) to bewritten as

... . (29)a a
a a

a a
a a

a a a a¯ ¯ 3
¯

¯ ¯ 3
¯

... ¯ ... ¯m m
m m

m m1 1
1 1

1 1ω σ ω σ ψ ψ=′
′

′
′

Substituting this into nμ
μ and using the explicit forms of the Paulimatrices alongwith thematrix

representation i 2ω σ= , wefind

n m( ) ( 1) ...

( 1) ... . (30)

m
a a a a

a a
a

a a

m
a a a a a

a a a a a

1 1 ... ...

1 1 ... ...

m m
m m

m m
m m

2 2
1

1

2

2 2 1
2 1 2

σ σ ψ ψ

σ σ ψ ψ

= −

= − −

μ
μ

′ ′
′ ′

′

′ ′ ′
′ ′ ′



Using ( )1 1σ σ= ⊤ and relabelling the indices a ai i↔ ′ for i m2, ,= … , the last line of equation (30) is equal to

n m( ) ( 1) ... , (31)m
a a a a

a a
a

a a1 1 ... ...
m m

m m
2 2

1
1

2σ σ ψ ψ= −μ
μ

′ ′
′ ′

′
which is the negative of thefirst line in equation (30). This proves that the BC (25) implies n m( ) 0=μ

μ for an
arbitrary spin-m 2 field,meaning that it is indeed a generalized bag-like BC. This is themain result of ourwork.

Aswe have already noted, the identification of a physical current  for higher spin fields seems at first
problematic, due to the non-existence of a local particle current for spin 1 2> .We have in fact already tackled
this problemby adapting the spin-1 2 BCs to the spin-1 case. This enables us to inductively determine the
appropriate  for higher spin fields.

Particularly noteworthy is identificationof  for the spin-2field that describes linearized quantumgravity.
Thisfield ismost commonly described using a symmetric traceless tensorfield hμν that results from thefirst-order
expansion g u g uh( ) ...= + +μν μν μν of the generalmetric tensor of curved spacetime. In thisfirst-order
approximation, Einstein’s vacuumequations in termsof hμν are equivalent to the correct relativisticwave equation
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for amassless spin-2 particle (the so-called graviton). The right and left-helicities of the graviton are described by
symmetric spin-tensors abcdψ and abcd¯ ¯¯ ¯ψ respectively. These can beused to define theBel–Robinson tensor, which
is a strong candidate for the gravitational version of a symmetric energy–momentum tensor [23].While it iswell-
known that the gravitationalfield does not possess a unique local energy–momentum tensor, theBel–Robinson
tensorT μνρσ possessesmanyof the properties usually associatedwith suchobjects, namely, total-symmetry,
tracelessness and certain positivity properties [23]. It is also the natural spin-2 analog of the symmetric energy–
momentum tensorT μν of electrodynamics. The generalizedBC in equation (25) therefore implies the vanishing of
the local currentT 000μ . Analogously to the currents encountered in the spin-1 2 and spin-1 cases,T 000μ couldbe
viewed as a natural quantity in termsofwhich the physical BC should be specified for the spin-2field.

A possible impact of our unified BC is the ability to transfer well-known techniques from electromagnetism
tofields with different spin. This could prove especially fruitful in extending ourwork to consideration of
imperfectly reflecting boundaries, as was done very recently in [27] for the particular case of the spin-2 graviton.

To conclude, we have reported the first unified treatment of physical (bag-like) BCs at perfect reflectors for
fields with arbitrary spin. This was achieved bywritingwell-knownBCs for theMaxwell andmassless Dirac
fields in a unified language, and then carrying out a natural generalization. The very existence of a unified BC for
theMaxwell andDiracfields is a remarkable result on its own because of the fundamental differences between
the conserved currents for the twofields. However, we have shown that such a BCdoes exist—the unification of
two apparently disparate approaches within one self-consistentmodel is a satisfying result, butmoreover the
unification proceeds in such away that it can be naturally extended tofind completely new bag-like BCs forfields
with any spin,meaning that ourwork opens up awhole landscape of study in confinement of higher-spin fields.
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