61 research outputs found
A Compact Cold-Atom Interferometer with a High Data-Rate Grating Magneto-Optical Trap and a Photonic-Integrated-Circuit-Compatible Laser System
The extreme miniaturization of a cold-atom interferometer accelerometer
requires the development of novel technologies and architectures for the
interferometer subsystems. Here we describe several component technologies and
a laser system architecture to enable a path to such miniaturization. We
developed a custom, compact titanium vacuum package containing a
microfabricated grating chip for a tetrahedral grating magneto-optical trap
(GMOT) using a single cooling beam. In addition, we designed a multi-channel
photonic-integrated-circuit-compatible laser system implemented with a single
seed laser and single sideband modulators in a time-multiplexed manner,
reducing the number of optical channels connected to the sensor head. In a
compact sensor head containing the vacuum package, sub-Doppler cooling in the
GMOT produces 15 uK temperatures, and the GMOT can operate at a 20 Hz data
rate. We validated the atomic coherence with Ramsey interferometry using
microwave spectroscopy, then demonstrated a light-pulse atom interferometer in
a gravimeter configuration for a 10 Hz measurement data rate and T = 0 - 4.5 ms
interrogation time, resulting in g / g = 2.0e-6. This work represents
a significant step towards deployable cold-atom inertial sensors under large
amplitude motional dynamics.Comment: 21 pages, 10 figure
Optical Magnetometry
Some of the most sensitive methods of measuring magnetic fields utilize
interactions of resonant light with atomic vapor. Recent developments in this
vibrant field are improving magnetometers in many traditional areas such as
measurement of geomagnetic anomalies and magnetic fields in space, and are
opening the door to new ones, including, dynamical measurements of bio-magnetic
fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance
imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms,
and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic
Recommended from our members
Atmospherically Deposited PBDEs, Pesticides, PCBs, and PAHs in Western U.S. National Park Fish: Concentrations and Consumption Guidelines
Concentrations of polybrominated diphenyl ethers (PBDEs),
pesticides, polychlorinated biphenyls (PCBs), and polycyclic
aromatic hydrocarbons were measured in 136 fish from 14 remote
lakes in 8 western U.S. National Parks/Preserves between
2003 and 2005 and compared to human and wildlife contaminant
health thresholds. A sensitive (median detection limit, -18
pg/g wet weight), efficient (61% recovery at 8 ng/g), reproducible
(4.1% relative standard deviation (RSD)), and accurate (7%
deviation from standard reference material (SRM)) analytical
method was developed and validated for these analyses.
Concentrations of PCBs, hexachlorobenzene, hexachlorocyclohexanes,
DDTs, and chlordanes in western U.S. fish were
comparable to or lower than mountain fish recently collected
from Europe, Canada, and Asia. Dieldrin and PBDE concentrations
were higher than recent measurements in mountain
fish and Pacific Ocean salmon. Concentrations of most
contaminants in western U.S. fish were 1–6 orders of magnitude
below calculated recreational fishing contaminant health
thresholds. However, lake average contaminant concentrations
in fish exceeded subsistence fishing cancer thresholds in 8
of 14 lakes and wildlife contaminant health thresholds for
piscivorous birds in 1 of 14 lakes. These results indicate that atmospherically deposited organic contaminants can accumulate
in high elevation fish, reaching concentrations relevant to
human and wildlife health
Pipeline for Large-Scale Microdroplet Bisulfite PCR-Based Sequencing Allows the Tracking of Hepitype Evolution in Tumors
Cytosine methylation provides an epigenetic level of cellular plasticity that is important for development, differentiation and cancerogenesis. We adopted microdroplet PCR to bisulfite treated target DNA in combination with second generation sequencing to simultaneously assess DNA sequence and methylation. We show measurement of methylation status in a wide range of target sequences (total 34 kb) with an average coverage of 95% (median 100%) and good correlation to the opposite strand (rho = 0.96) and to pyrosequencing (rho = 0.87). Data from lymphoma and colorectal cancer samples for SNRPN (imprinted gene), FGF6 (demethylated in the cancer samples) and HS3ST2 (methylated in the cancer samples) serve as a proof of principle showing the integration of SNP data and phased DNA-methylation information into “hepitypes” and thus the analysis of DNA methylation phylogeny in the somatic evolution of cancer
Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus
In 2014 a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 years. We do not agree with the arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of taxonomy and of formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina
Mercury flux to sediments of Lake Tahoe, California-Nevada
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Water, Air, & Soil Pollution 210 (2010): 399-407, doi:10.1007/s11270-009-0262-y.We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California-Nevada: 2 and 15-20 µg/m2/yr in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5-10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the value of 3 typically seen worldwide. We offer plausible hypotheses to explain the high flux ratios, including (1) proportionally less photoreduction and evasion of Hg with the onset of cultural eutrophication and (2) a combination of enhanced regional oxidation of gaseous elemental Hg and transport of the resulting reactive gaseous Hg to the surface with nightly downslope flows of air. If either of these mechanisms is correct, it could lead to local/regional solutions to lessen the impact of globally increasing anthropogenic emissions of Hg on Lake Tahoe and other alpine ecosystems.Funding was provided by Miami University, EPA-STAR, the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, and the USGS
- …