280 research outputs found
Pancreatic Fistula and Biochemical Leak after Splenectomy: Incidence and Risk Factors-A Retrospective Single-Center Analysis
Purpose Postoperative pancreatic fistula (POPF) is a complication discussed in the context of pancreatic surgery, but may also result from splenectomy; a relationship that has not been investigated extensively yet. Methods This retrospective single-center study aimed to analyze incidence of and risk factors for POPF after splenectomy. Patient characteristics included demographic data, surgical procedure, and intra- and postoperative complications. POPF was defined according to the International Study Group on Pancreatic Surgery as POPF of grade B and C or biochemical leak (BL). Results Over ten years, 247 patients were identified, of whom 163 underwent primary (spleen-associated pathologies) and 84 secondary (extrasplenic oncological or technical reasons) splenectomy. Thirty-six patients (14.6%) developed POPF of grade B/C or BL, of which 13 occurred after primary (7.9%) and 23 after secondary splenectomy (27.3%). Of these, 25 (69.4%) were BL, 7 (19.4%) POPF of grade B and 4 (11.1%) POPF of grade C. BL were treated conservatively while three patients with POPF of grade B required interventional procedures and 4 with POPF of grade C required surgery. POPF and BL was noted significantly more often after secondary splenectomy and longer procedures. Multivariate analysis confirmed secondary splenectomy and use of energy-based devices as independent risk factors for development of POPF/BL after splenectomy. Conclusion With an incidence of 4.5%, POPF is a relevant complication after splenectomy. The main risk factor identified was secondary splenectomy. Although POPF and BL can usually be treated conservatively, it should be emphasized when obtaining patients' informed consent and treated at centers with experience in pancreatic surgery
Excitation of weakly bound Rydberg electrons by half-cycle pulses
The interaction of a weakly bound Rydberg electron with an electromagnetic
half-cycle pulse (HCP) is described with the help of a multidimensional
semiclassical treatment. This approach relates the quantum evolution of the
electron to its underlying classical dynamics. The method is nonperturbative
and is valid for arbitrary spatial and temporal shapes of the applied HCP. On
the basis of this approach angle- and energy-resolved spectra resulting from
the ionization of Rydberg atoms by HCPs are analyzed. The different types of
spectra obtainable in the sudden-impact approximation are characterized in
terms of the appearing semiclassical scattering phenomena. Typical
modifications of the spectra originating from finite pulse effects are
discussed.Comment: Submitted to Phys. Rev.
Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex
Negative length orbits in normal-superconductor billiard systems
The Path-Length Spectra of mesoscopic systems including diffractive
scatterers and connected to superconductor is studied theoretically. We show
that the spectra differs fundamentally from that of normal systems due to the
presence of Andreev reflection. It is shown that negative path-lengths should
arise in the spectra as opposed to normal system. To highlight this effect we
carried out both quantum mechanical and semiclassical calculations for the
simplest possible diffractive scatterer. The most pronounced peaks in the
Path-Length Spectra of the reflection amplitude are identified by the routes
that the electron and/or hole travels.Comment: 4 pages, 4 figures include
Diffraction and boundary conditions in semi-classical open billiards
The conductance through open quantum dots or quantum billiards shows
fluctuations, that can be explained as interference between waves following
different paths between the leads of the billiard. We examine such systems by
the use of a semi-classical Green's functions. In this paper we examine how the
choice of boundary conditions at the lead mouths affect the diffraction. We
derive a new formula for the S-matrix element. Finally we compare
semi-classical simulations to quantum mechanical ones, and show that this new
formula yield superior results.Comment: 7 pages, 4 figure
Optical creation of vibrational intrinsic localized modes in anharmonic lattices with realistic interatomic potentials
Using an efficient optimal control scheme to determine the exciting fields,
we theoretically demonstrate the optical creation of vibrational intrinsic
localized modes (ILMs) in anharmonic perfect lattices with realistic
interatomic potentials. For systems with finite size, we show that ILMs can be
excited directly by applying a sequence of femtosecond visible laser pulses at
THz repetition rates. For periodic lattices, ILMs can be created indirectly via
decay of an unstable extended lattice mode which is excited optically either by
a sequence of pulses as described above or by a single picosecond far-infrared
laser pulse with linearly chirped frequency. In light of recent advances in
experimental laser pulse shaping capabilities, the approach is experimentally
promising.Comment: 20 pages, 7 eps figures. Accepted, Phys. Rev.
Conductance of Open Quantum Billiards and Classical Trajectories
We analyse the transport phenomena of 2D quantum billiards with convex
boundary of different shape. The quantum mechanical analysis is performed by
means of the poles of the S-matrix while the classical analysis is based on the
motion of a free particle inside the cavity along trajectories with a different
number of bounces at the boundary. The value of the conductance depends on the
manner the leads are attached to the cavity. The Fourier transform of the
transmission amplitudes is compared with the length of the classical paths.
There is good agreement between classical and quantum mechanical results when
the conductance is achieved mainly by special short-lived states such as
whispering gallery modes (WGM) and bouncing ball modes (BBM). In these cases,
also the localization of the wave functions agrees with the picture of the
classical paths. The S-matrix is calculated classically and compared with the
transmission coefficients of the quantum mechanical calculations for five modes
in each lead. The number of modes coupled to the special states is effectively
reduced.Comment: 19 pages, 6 figures (jpg), 2 table
Practical computational toolkits for dendrimers and dendrons structure design
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface (GUI) toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.Peer reviewe
The eNMR platform for structural biology
The e-NMR project is a European cooperation initiative that aims at providing the bio-NMR user community with a software platform integrating and streamlining the computational approaches necessary for the analysis of bio-NMR data. The e-NMR platform is based on a Grid computational infrastructure. A main focus of the current implementation of the e-NMR platform is on streamlining structure determination protocols. Indeed, to facilitate the use of NMR spectroscopy in the life sciences, the eNMR consortium has set out to provide protocolized services through easy-to-use web interfaces, while still retaining sufficient flexibility to handle specific requests by expert users. Various programs relevant for structural biology applications are already available through the e-NMR portal, including HADDOCK, XPLOR-NIH, CYANA and csRosetta. The implementation of these services, and in particular the distribution of calculations to the GRID infrastructure, has required the development of specific tools. However, the GRID infrastructure is maintained completely transparent to the users. With more than 150 registered users, eNMR is currently the second largest European Virtual Organization in the life sciences
- …