205 research outputs found

    The Dzhungarian fault: Late Quaternary tectonics and slip rate of a major right-lateral strike-slip fault in the northern Tien Shan region

    Get PDF
    The Dzhungarian strike-slip fault of Central Asia is one of a series of long, NW-SE right-lateral strike-slip faults that are characteristic of the northern Tien Shan region and extends over 300 km from the high mountains into the Kazakh Platform. Our field-based and satellite observations reveal that the Dzhungarian fault can be characterized by three 100 km long sections based on variation in strike direction. Through morphological analysis of offset streams and alluvial fans, and through optically stimulated luminescence dating, we find that the Dzhungarian fault has a minimum average late Quaternary slip rate of 2.2 ± 0.8 mm/yr and accommodates N-S shortening related to the India-Eurasia collision. This shortening may also be partly accommodated by counterclockwise rotation about a vertical axis. Evidence for a possible paleo-earthquake rupture indicates that earthquakes up to at least Mw 7 can be associated with just the partitioned component of reverse slip on segments of the central section of the fault up to 30 km long. An event rupturing longer sections of the Dzhungarian fault has the potential to generate greater magnitude earthquakes (Mw 8); however, long time periods (e.g., thousands of years) are expected in order to accumulate enough strain to generate such earthquakes.We thank the Royal Society International Travel Grant, Mike Coward Fund of the Geological Society of London, Percy Sladen Fund of the Linnean Society, The Gilchrist Educational Trust, and the Earth and Space Foundation for their support in funding this project. GEC’s doctoral studentship is funded by the National Environmental Research Council through NCEO, COMET, and the NERC-ESRC funded Earthquakes without Frontiers (EWF) Project. RTW is supported by a University Research Fellowship awarded by the Royal Society.This is the final version of the article, originally published in the Journal of Geophysical Research: Solid Earth. It is also available from Wiley at http://onlinelibrary.wiley.com/doi/10.1002/jgrb.50367/abstract. © 2013. American Geophysical Unio

    Dispersal of thermophilic beetles across the intercontinental Arctic forest belt during the early Eocene

    Get PDF
    Abstract Massive biotic change occurred during the Eocene as the climate shifted from warm and equable to seasonal and latitudinally stratified. Mild winter temperatures across Arctic intercontinental land bridges permitted dispersal of frost-intolerant groups until the Eocene-Oligocene boundary, while trans-Arctic dispersal in thermophilic groups may have been limited to the early Eocene, especially during short-lived hyperthermals. Some of these lineages are now disjunct between continents of the northern hemisphere. Although Eocene climate change may have been one of the most important drivers of these ancient patterns in modern animal and plant distributions, its particular events are rarely implicated or correlated with group-specific climatic requirements. Here we explored the climatic and geological drivers of a particularly striking Neotropical-Oriental disjunct distribution in the rove beetle Bolitogyrus, a suspected Eocene relict. We integrated evidence from Eocene fossils, distributional and climate data, paleoclimate, paleogeography, and phylogenetic divergence dating to show that intercontinental dispersal of Bolitogyrus ceased in the early Eocene, consistent with the termination of conditions required by thermophilic lineages. These results provide new insight into the poorly known and short-lived Arctic forest community of the Early Eocene and its surviving lineages

    Lateglacial and early Holocene evolution of the Tyne Valley in response to climatic shifts and possible paraglacial landscape legacies

    Get PDF
    This paper presents new sedimentological, geomorphological, and optically stimulated luminescence (OSL) geochronological evidence for fluvial evolution of the mid- to lower River Tyne through the Lateglacial to late Holocene. These data reveal a series of fluvial terraces produced by cycles of aggradation and incision, conditioned by glacial inheritance and driven by changing sediment availability and hydrological regime. The distribution and stratigraphy (where available) of nine river terrace and their associated sediments have been recorded. At two key sites the sediments have been dated using OSL measurements to constrain the fluvial geomorphology. Significant entrenchment of the fluvial system, followed by aggradation formed the earliest fluvial terrace (T1), which encompasses environments spanning the transition from deglaciation into Greenland Interstadial 1 (GI-1). Incision below T1 began towards the end of GI-1, with three terraces (T2 – T4) between the abandonment of T1 and the early Holocene (15.0–9.2 ka). Climatic shifts, limited vegetation cover/soil development, and peri−/paraglacial landscape instability conditioned the development of the early postglacial fluvial landsystem. Three further terraces (T5 – T7) developed during the mid- to Late Holocene (6.6–3.1 ka), and comprise most of the valley floor. Climatic instability, glacial inheritance, and widespread anthropogenic disturbances are reflected in greater hillslope-channel coupling during this period. The extent of later Holocene terraces (T8 – T9) is limited as the river became isolated from flanking hillslopes entrenched between existing river terraces. Fluvial landscape evolution in formerly glaciated catchments is strongly conditioned by the cold stage legacy that introduced excess sediment and landscape instability into the catchment. Subsequent catchment-wide responses are variable and non-linear, with valley floors operating in a series of reach-wide responses. There is a need for greater chronological control to constrain the Lateglacial and Holocene evolution in the Tyne catchment, but also to further our understanding of region-wide responses to external drivers and local dynamics

    Great earthquakes in low strain rate continental interiors: An example from SE Kazakhstan

    Get PDF
    The Lepsy fault of the northern Tien Shan, SE Kazakhstan, extends E-W 120 km from the high mountains of the Dzhungarian Ala-tau, a subrange of the northern Tien Shan, into the low-lying Kazakh platform. It is an example of an active structure that connects a more rapidly deforming mountain region with an apparently stable continental region and follows a known Palaeozoic structure. Field-based and satellite observations reveal an ∼10 m vertical offset exceptionally preserved along the entire length of the fault. Geomorphic analysis and age control from radiocarbon and optically stimulated luminescence dating methods indicate that the scarp formed in the Holocene and was generated by at least two substantial earthquakes. The most recent event, dated to sometime after ∼400 years B.P., is likely to have ruptured the entire ∼120 km fault length in a Mw 7.5–8.2 earthquake. The Lepsy fault kinematics were characterized using digital elevation models and high-resolution satellite imagery, which indicate that the predominant sense of motion is reverse right lateral with a fault strike, dip, and slip vector azimuth of ∼110∘, 50∘S, and 317–343∘, respectively, which is consistent with predominant N-S shortening related to the India-Eurasia collision. In light of these observations, and because the activity of the Lepsy fault would have been hard to ascertain if it had not ruptured in the recent past, we note that the absence of known active faults within low-relief and low strain rate continental interiors does not always imply an absence of seismic hazard

    An early MIS 3 pluvial phase in Southeast Arabia: climatic and archaeological implications

    Get PDF
    Climatic changes in Arabia are of critical importance to our understanding of both monsoon variability and the dispersal of anatomically modern humans (AMH) out of Africa. The timing of dispersal is associated with the occurrence of pluvial periods during Marine Isotope Stage (MIS) 5 (ca. 130–74 ka), after which arid conditions between ca. 74 and 10.5 ka are thought to have restricted further migration and range expansion within the Arabian interior. Whilst a number of records indicate that this phase of aridity was punctuated by an increase in monsoon strength during MIS 3, uncertainties regarding the precision of terrestrial records and suitability of marine archives as records of precipitation, mean that the occurrence of this pluvial remains debated. Here we present evidence from a series of relict lake deposits within southeastern Arabia, which formed at the onset of MIS 3 (ca. 61–58 ka). At this time, the incursion of monsoon rainfall into the Arabian interior activated a network of channels associated with an alluvial fan system along the western flanks of the Hajar Mountains, leading to lake formation. Multiproxy evidence indicates that precipitation increases intermittently recharged fluvial systems within the region, leading to lake expansion in distal fan zones. Conversely, decreased precipitation led to reduced channel flow, lake contraction and a shift to saline conditions. These findings are in contrast to the many other palaeoclimatic records from Arabia, which suggest that during MIS 3, the latitudinal position of the monsoon was substantially further south and did not penetrate the peninsula. Additionally, the occurrence of increased rainfall at this time challenges the notion that the climate of Arabia following MIS 5 was too harsh to permit the further range expansion of indigenous communities

    Late Quaternary evolution of a lowland anastomosing river system: Geological-topographic inheritance, non-uniformity and implications for biodiversity and management

    Get PDF
    Lowland multiple-channel rivers are characterised by floodplain-corridor heterogeneity, high ecological and heritage value, and can be in quasi-stable states. This holistic study of a surviving temperate zone example (Culm, UK) uses geomorphological mapping, 14C, direct sediment dating (OSL, fallout radionuclides), and palaeoecology. This reveals the evolution of a channel-floodplain system from an initial braided state in the Late Pleistocene to its late Holocene anastomosing state. After the Pleistocene Holocene transition the reduced channel system incised into its braid-plain, only able to rework gravels locally due to reduced competence in relation to inherited bounding sediment calibre. This resulted in the creation of terrace islands, palaeochannels, and a stable anastomosing pattern dominated by channel junctions, bifurcations and palaeochannel intersections. Survey, coring and excavation reveal a persistence of mid-channel bars and riffles at channel junctions, and where channels crossed palaeochannel fills. In common with most other European lowland rivers this system evolves in the later Holocene due to both climate and catchment changes with a major hydrological critical transition in the mid-Holocene (c. 5300 BP). However, in the case of the Culm, the increase in fine sediment supply often seen in lowland catchments in the Middle-Late Holocene, occurred later, and was insufficient to convert the system to a single medium-low sinuosity channel-floodplain. This allowed the persistence of high heterogeneity and biodiversity (including the persistence of riffle beetles) as part of multiple-scales of non-uniformity. Indeed the pool-riffle persistence is an example of this system’s non-uniformity, being due, at least in part, to the effects of previous channel history. This paper reveals why this river survived in a multichannel state, and by implication, why others did not. These results are being used in the bespoke eco-heritage management of the Culm, but could also inform the restoration of other former multi-channel lowland temperate river systems worldwide

    Craig Rhos-y-felin: A Welsh bluestone megalith quarry for Stonehenge

    Get PDF
    The long-distance transport of the bluestones from south Wales to Stonehenge is one of the most remarkable achievements of Neolithic societies in north-west Europe. Where precisely these stones were quarried, when they were extracted and how they were transported has long been a subject of speculation, experiment and controversy. The discovery of a megalithic bluestone quarry at Craig Rhos-y-felin in 2011 marked a turning point in this research. Subsequent excavations have provided details of the quarrying process along with direct dating evidence for the extraction of bluestone monoliths at this location, demonstrating both Neolithic and Early Bronze Age activity

    OSL dating of the Aterian levels at Dar es-Soltan I

    Get PDF
    a b s t r a c t The Aterian is a distinctive Middle Palaeolithic industry which is very widely spread across North Africa. Its dating and significance have been debated for nearly a century. Renewed interest in the Aterian has arisen because of a recent proposal that its development and spread may be linked to the dispersal of anatomically modern humans. The industry contains technological innovations such as thin bifacially flaked lithic points and pedunculates as well as evidence for personal ornaments and use of red ochre. Such markers as shell beads are believed to be indicative of symbolic behaviour. Dar es-Soltan I on the Atlantic coast of Morocco contains a thick sequence of Aterian deposits that were thought to represent the later stages of development of this industry. New Optically Stimulated Luminescence dates and geomorphological study indicate a much older sequence and so far the earliest yet recorded ages for the Aterian. They suggest an appearance in the Maghreb region during MIS (Marine Isotope Stage) 5
    • …
    corecore