1,627 research outputs found

    Effective Nucleon-Nucleon Interaction and Fermi Liquid Theory

    Get PDF
    We present two novel relations between the quasiparticle interaction in nuclear matter and the unique low momentum nucleon-nucleon interaction in vacuum. These relations provide two independent constraints on the Fermi liquid parameters of nuclear matter. Moreover, the new constraints define two combinations of Fermi liquid parameters, which are invariant under the renormalization group flow in the particle-hole channels. Using empirical values for the spin-independent Fermi liquid parameters, we are able to compute the major spin-dependent ones by imposing the new constraints as well as the Pauli principle sum rules.Comment: 4 pages, 5 figures, in Proc. 11th International Conference on Recent Progress in Many-Body Theories, Manchester, UK, July 9-13, 200

    How should one formulate, extract, and interpret `non-observables' for nuclei?

    Full text link
    Nuclear observables such as binding energies and cross sections can be directly measured. Other physically useful quantities, such as spectroscopic factors, are related to measured quantities by a convolution whose decomposition is not unique. Can a framework for these nuclear structure `non-observables' be formulated systematically so that they can be extracted from experiment with known uncertainties and calculated with consistent theory? Parton distribution functions in hadrons serve as an illustrative example of how this can be done. A systematic framework is also needed to address questions of interpretation, such as whether short-range correlations are important for nuclear structure.Comment: 7 pages. Contribution to the "Focus issue on Open Problems in Nuclear Structure", Journal of Physics

    Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    Full text link
    We present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy. This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.Comment: 6 pages, 5 figures, version compatible with published lette

    Signatures of few-body resonances in finite volume

    Get PDF
    We study systems of bosons and fermions in finite periodic boxes and show how the existence and properties of few-body resonances can be extracted from studying the volume dependence of the calculated energy spectra. Using a plane-wave-based discrete variable representation to conveniently implement periodic boundary conditions, we establish that avoided level crossings occur in the spectra of up to four particles and can be linked to the existence of multi-body resonances. To benchmark our method we use two-body calculations, where resonance properties can be determined with other methods, as well as a three-boson model interaction known to generate a three-boson resonance state. Finding good agreement for these cases, we then predict three-body and four-body resonances for models using a shifted Gaussian potential. Our results establish few-body finite-volume calculations as a new tool to study few-body resonances. In particular, the approach can be used to study few-neutron systems, where such states have been conjectured to exist.Comment: 13 pages, 10 figures, 2 tables, published versio

    Invisible Pixels Are Dead, Long Live Invisible Pixels!

    Full text link
    Privacy has deteriorated in the world wide web ever since the 1990s. The tracking of browsing habits by different third-parties has been at the center of this deterioration. Web cookies and so-called web beacons have been the classical ways to implement third-party tracking. Due to the introduction of more sophisticated technical tracking solutions and other fundamental transformations, the use of classical image-based web beacons might be expected to have lost their appeal. According to a sample of over thirty thousand images collected from popular websites, this paper shows that such an assumption is a fallacy: classical 1 x 1 images are still commonly used for third-party tracking in the contemporary world wide web. While it seems that ad-blockers are unable to fully block these classical image-based tracking beacons, the paper further demonstrates that even limited information can be used to accurately classify the third-party 1 x 1 images from other images. An average classification accuracy of 0.956 is reached in the empirical experiment. With these results the paper contributes to the ongoing attempts to better understand the lack of privacy in the world wide web, and the means by which the situation might be eventually improved.Comment: Forthcoming in the 17th Workshop on Privacy in the Electronic Society (WPES 2018), Toronto, AC

    Magnetic Properties of the low dimensional spin system (VO)2_2P2_2O7_{7}: ESR and susceptibility

    Full text link
    Experimental results on magnetic resonance (ESR) and magnetic susceptibility are given for single crystalline (VO)2_2P2_2O7_{7}. The crystal growth procedure is briefly discussed. The susceptibility is interpreted numerically using a model with alternating spin chains. We determine JJ=51 K and δ\delta=0.2. Furthermore we find a spin gap of ≈6\approx 6meV from our ESR measurements. Using elastic constants no indication of a phase transition forcing the dimerization is seen below 300 K.Comment: 7 pages, REVTEX, 7 figure
    • …
    corecore