15 research outputs found
Cometary dust analogues for physics experiments
The CoPhyLab (Cometary Physics Laboratory) project is designed to study the
physics of comets through a series of earth-based experiments. For these
experiments, a dust analogue was created with physical properties comparable to
those of the non-volatile dust found on comets. This "CoPhyLab dust" is planned
to be mixed with water and CO ice and placed under cometary conditions in
vacuum chambers to study the physical processes taking place on the nuclei of
comets. In order to develop this dust analogue, we mixed two components
representative for the non-volatile materials present in cometary nuclei. We
chose silica dust as representative for the mineral phase and charcoal for the
organic phase, which also acts as a darkening agent. In this paper, we provide
an overview of known cometary analogues before presenting measurements of eight
physical properties of different mixtures of the two materials and a comparison
of these measurements with known cometary values. The physical properties of
interest are: particle size, density, gas permeability, spectrophotometry,
mechanical, thermal and electrical properties. We found that the analogue dust
that matches the highest number of physical properties of cometary materials
consists of a mixture of either 60\%/40\% or 70\%/30\% of silica dust/charcoal
by mass. These best-fit dust analogue will be used in future CoPhyLab
experiments
Epigenetic regulator genes direct lineage switching in MLL/AF4 leukaemia
The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukaemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukaemia resulting in poor clinical outcomes due to resistance towards chemo- and immuno-therapies. Here we show that the myeloid relapses share oncogene fusion breakpoints with their matched lymphoid presentations and can originate from varying differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programmes, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex, NuRD. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4-positive cell models indicating that lineage switching in MLL/AF4 leukaemia is driven and maintained by disrupted epigenetic regulation
Robust optimal rendezvous using differential drag
The practical realization of the differential drag technique for orbital relative maneuvers must cope with the several and severe uncertainty sources affecting drag modeling. Neglecting these uncertainties might yield to oversimplified solutions whose representation of a real-life scenario is questionable. The first outcome of this study consists in the synthesis of a robust optimal controller which combines differential flatness theory and the scenario approach to generate a reference path which can be easily followed. The second outcome is the characterization of the relevant uncertainties of the differential drag problem, with a special focus on the aerodynamic force. The developments are validated in a highly detailed simulation environment including, among the perturbations, advanced drag modeling and coupled attitude and orbital dynamics
The CoPhyLab comet-simulation chamber
The Comet Physics Laboratory (CoPhyLab) is an international research program to study the physical properties of cometary analog materials under simulated space conditions. The project is dedicated to studying, with the help of multiple instruments and the different expertise and background from the different partners, the physics of comets, including the processes inside cometary nuclei, the activity leading to the ejection of dust and gas, and the sub-surface and surface evolution of cometary nuclei when exposed to solar illumination. CoPhyLab will provide essential information on the formation and evolution of comets and insights into the origins of primitive Solar System bodies. To this end, we constructed a new laboratory that hosts several small-scale experiments and a large-scale comet-simulation chamber (L-Chamber). This chamber has been designed and constructed to host ice–dust samples with a diameter of up to 250 mm and a variable height between 100 and 300 mm. The cometary-analog samples will be kept at temperatures below 120 K and pressures around 10−6 mbar to ensure cometary-like conditions. In total, 14 different scientific instruments are attached to the L-Chamber to study the temporal evolution of the physical properties of the sample under different insolation conditions. Due to the implementation of a scale inside the L-Chamber that can measure weight changes of the samples with high precision, the cooling system is mechanically decoupled from the sample holder and cooling of the samples occurs by radiation only. The constructed chamber allows us to conduct uninterrupted experiments at low temperatures and pressures up to several weeks