24 research outputs found

    On-demand generation of background--free single photons from a solid-state source

    Full text link
    True on--demand high--repetition--rate single--photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi--photon emission. Here, we present a solid--state source of on--demand single photons yielding a raw second--order coherence of g(2)(0)=(7.5±1.6)×105g^{(2)}(0)=(7.5\pm1.6)\times10^{-5} without any background subtraction nor data processing. To this date, this is the lowest value of g(2)(0)g^{(2)}(0) reported for any single--photon source even compared to the previously best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low--Q planar cavity by employing (i) a two--photon excitation process and (ii) a filtering and detection setup featuring two superconducting single--photon detectors with ultralow dark-count rates of (0.0056±0.0007)s1(0.0056\pm0.0007) s^{-1} and (0.017±0.001)s1(0.017\pm0.001) s^{-1}, respectively. Re--excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor

    Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability

    Full text link
    Photonic quantum technologies call for scalable quantum light sources that can be integrated, while providing the end user with single and entangled photons on-demand. One promising candidate are strain free GaAs/AlGaAs quantum dots obtained by droplet etching. Such quantum dots exhibit ultra low multi-photon probability and an unprecedented degree of photon pair entanglement. However, different to commonly studied InGaAs/GaAs quantum dots obtained by the Stranski-Krastanow mode, photons with a near-unity indistinguishability from these quantum emitters have proven to be elusive so far. Here, we show on-demand generation of near-unity indistinguishable photons from these quantum emitters by exploring pulsed resonance fluorescence. Given the short intrinsic lifetime of excitons confined in the GaAs quantum dots, we show single photon indistinguishability with a raw visibility of Vraw=(94.2±5.2)%V_{raw}=(94.2\pm5.2)\,\%, without the need for Purcell enhancement. Our results represent a milestone in the advance of GaAs quantum dots by demonstrating the final missing property standing in the way of using these emitters as a key component in quantum communication applications, e.g. as an entangled source for quantum repeater architectures

    The crux of using the cascaded emission of a 3-level quantum ladder system to generate indistinguishable photons

    Get PDF
    We investigate the degree of indistinguishability of cascaded photons emitted from a 3-level quantum ladder system; in our case the biexciton-exciton cascade of semiconductor quantum dots. For the 3-level quantum ladder system we theoretically demonstrate that the indistinguishability is inherently limited for both emitted photons and determined by the ratio of the lifetimes of the excited and intermediate states. We experimentally confirm this finding by comparing the quantum interference visibility of non-cascaded emission and cascaded emission from the same semiconductor quantum dot. Quantum optical simulations produce very good agreement with the measurements and allow to explore a large parameter space. Based on our model, we propose photonic structures to optimize the lifetime ratio and overcome the limited indistinguishability of cascaded photon emission from a 3-level quantum ladder system.Comment: We moved the paragraph about asymmetric Purcell enhancement from page 4 bottom to page 5 first colum

    The Origin of Antibunching in Resonance Fluorescence

    Full text link
    Epitaxial quantum dots have emerged as one of the best single-photon sources, not only for applications in photonic quantum technologies but also for testing fundamental properties of quantum optics. One intriguing observation in this area is the scattering of photons with subnatural linewidth from a two-level system under resonant continuous wave excitation. In particular, an open question is whether these subnatural linewidth photons exhibit simultaneously antibunching as an evidence of single-photon emission. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. First, we independently confirm single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our experimental work is consistent with recent theoretical findings, that explain antibunching from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state.Comment: 8 pages, 4 figure

    Origin of antibunching in resonance fluorescence

    Full text link
    Resonance fluorescence has played a major role in quantum optics with predictions and later experimental confirmation of nonclassical features of its emitted light such as antibunching or squeezing. In the Rayleigh regime where most of the light originates from the scattering of photons with subnatural linewidth, antibunching would appear to coexist with sharp spectral lines. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. Using an epitaxial quantum dot for the two-level system, we independently confirm the single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our observation is explained by antibunching originating from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state. This prefigures schemes to achieve simultaneous subnatural linewidth and antibunched emissio
    corecore