72 research outputs found

    Effects of bone marrow‐derived mesenchymal stromal cells on gene expression in human alveolar type II cells exposed to TNF‐α, IL‐1ÎČ, and IFN‐γ

    Full text link
    The acute respiratory distress syndrome (ARDS) is common in critically ill patients and has a high mortality rate. Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in animal models of ARDS, and their benefits occur in part through interactions with alveolar type II (ATII) cells. However, the effects that MSCs have on human ATII cells have not been well studied. Using previously published microarray data, we performed genome‐wide differential gene expression analyses of human ATII cells that were (1) unstimulated, (2) exposed to proinflammatory cytokines (CytoMix), or (3) exposed to proinflammatory cytokines plus MSCs. Findings were validated by qPCR. Alveolar type II cells differentially expressed hundreds of genes when exposed either to proinflammatory cytokines or to proinflammatory cytokines plus MSCs. Stimulation with proinflammatory cytokines increased expression of inflammatory genes and downregulated genes related to surfactant function and alveolar fluid clearance. Some of these changes, including expression of some cytokines and genes related to surfactant, were reversed by exposure to MSCs. In addition, MSCs induced upregulation of other potentially beneficial genes, such as those related to extracellular matrix remodeling. We confirmed several of these gene expression changes by qPCR. Thus, ATII cells downregulate genes associated with surfactant and alveolar fluid clearance when exposed to inflammatory cytokines, and mesenchymal stromal cells partially reverse many of these gene expression changes.Mesenchymal stromal cells (MSCs) have therapeutic potential for the acute respiratory distress syndrome, and their benefits occur in part through interactions with alveolar type II (ATII) cells. We performed genome‐wide differential gene expression analyses of human ATII cells that were (1) unstimulated, (2) exposed to proinflammatory cytokines (CytoMix), or (3) exposed to CytoMix plus MSCs. Stimulation with CytoMix increased expression of inflammatory genes and downregulated genes related to surfactant function and alveolar fluid clearance, and several gene expression changes were reversed by exposure to MSCs.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145579/1/phy213831_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145579/2/phy213831.pd

    Stem Cell-Like Gene Expression in Ovarian Cancer Predicts Type II Subtype and Prognosis

    Get PDF
    Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age), the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further validation may be valuable in the clinical management or treatment of ovarian cancer

    Gene Expression Signature of Normal Cell-of-Origin Predicts Ovarian Tumor Outcomes

    Get PDF
    The potential role of the cell-of-origin in determining the tumor phenotype has been raised, but not adequately examined. We hypothesized that distinct cells-of-origin may play a role in determining ovarian tumor phenotype and outcome. Here we describe a new cell culture medium for in vitro culture of paired normal human ovarian (OV) and fallopian tube (FT) epithelial cells from donors without cancer. While these cells have been cultured individually for short periods of time, to our knowledge this is the first long-term culture of both cell types from the same donors. Through analysis of the gene expression profiles of the cultured OV/FT cells we identified a normal cell-of-origin gene signature that classified primary ovarian cancers into OV-like and FT-like subgroups; this classification correlated with significant differences in clinical outcomes. The identification of a prognostically significant gene expression signature derived solely from normal untransformed cells is consistent with the hypothesis that the normal cell-of-origin may be a source of ovarian tumor heterogeneity and the associated differences in tumor outcome

    Mutation Order in Acute Myeloid Leukemia Identifies Uncommon Patterns of Evolution and Illuminates Phenotypic Heterogeneity

    Get PDF
    Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes

    Utilizing multi-objective decision support tools for protected area selection

    Get PDF
    Establishing and maintaining protected areas (PAs) is a key action in delivering post-2020 biodiversity targets. PAs often need to meet multiple objectives, ranging from biodiversity protection to ecosystem service provision and climate change mitigation, but available land and conservation funding is limited. Therefore, optimizing resources by selecting the most beneficial PAs is vital. Here, we advocate for a flexible and transparent approach to selecting PAs based on multiple objectives, and illustrate this with a decision support tool on a global scale. The tool allows weighting and prioritization of different conservation objectives according to user-specified preferences as well as real-time comparison of the outcome. Applying the tool across 1,346 terrestrial PAs, we demonstrate that decision makers frequently face trade-offs among conflicting objectives, e.g., between species protection and ecosystem integrity. Nevertheless, we show that transparent decision support tools can reveal synergies and trade-offs associated with PA selection, thereby helping to illuminate and resolve land-use conflicts embedded in divergent societal and political demands and values.publishedVersio

    Data to knowledge: how to get meaning from your result

    Get PDF
    Structural and functional studies require the development of sophisticated `Big Data' technologies and software to increase the knowledge derived and ensure reproducibility of the data. This paper presents summaries of the Structural Biology Knowledge Base, the VIPERdb Virus Structure Database, evaluation of homology modeling by the Protein Model Portal, the ProSMART tool for conformation-independent structure comparison, the LabDB `super' laboratory information management system and the Cambridge Structural Database. These techniques and technologies represent important tools for the transformation of crystallographic data into knowledge and information, in an effort to address the problem of non-reproducibility of experimental results

    Epitope-engineered human hematopoietic stem cells are shielded from CD123-targeted immunotherapy

    Get PDF
    Targeted eradication of transformed or otherwise dysregulated cells using monoclonal antibodies (mAb), antibody-drug conjugates (ADC), T cell engagers (TCE), or chimeric antigen receptor (CAR) cells is very effective for hematologic diseases. Unlike the breakthrough progress achieved for B cell malignancies, there is a pressing need to find suitable antigens for myeloid malignancies. CD123, the interleukin-3 (IL-3) receptor alpha-chain, is highly expressed in various hematological malignancies, including acute myeloid leukemia (AML). However, shared CD123 expression on healthy hematopoietic stem and progenitor cells (HSPCs) bears the risk for myelotoxicity. We demonstrate that epitope-engineered HSPCs were shielded from CD123-targeted immunotherapy but remained functional, while CD123-deficient HSPCs displayed a competitive disadvantage. Transplantation of genome-edited HSPCs could enable tumor-selective targeted immunotherapy while rebuilding a fully functional hematopoietic system. We envision that this approach is broadly applicable to other targets and cells, could render hitherto undruggable targets accessible to immunotherapy, and will allow continued posttransplant therapy, for instance, to treat minimal residual disease (MRD)

    Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features

    Get PDF
    Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∌80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms.National Institute of Neurological Diseases and Stroke (U.S.) (R01NS035129)United States. National Institutes of Health (R21TW008223)National Cancer Institute (U.S.) (R01CA157996

    Taxonomy of breast cancer based on normal cell phenotype predicts outcome

    Get PDF
    Accurate classification is essential for understanding the pathophysiology of a disease and can inform therapeutic choices. For hematopoietic malignancies, a classification scheme based on the phenotypic similarity between tumor cells and normal cells has been successfully used to define tumor subtypes; however, use of normal cell types as a reference by which to classify solid tumors has not been widely emulated, in part due to more limited understanding of epithelial cell differentiation compared with hematopoiesis. To provide a better definition of the subtypes of epithelial cells comprising the breast epithelium, we performed a systematic analysis of a large set of breast epithelial markers in more than 15,000 normal breast cells, which identified 11 differentiation states for normal luminal cells. We then applied information from this analysis to classify human breast tumors based on normal cell types into 4 major subtypes, HR0–HR3, which were differentiated by vitamin D, androgen, and estrogen hormone receptor (HR) expression. Examination of 3,157 human breast tumors revealed that these HR subtypes were distinct from the current classification scheme, which is based on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Patient outcomes were best when tumors expressed all 3 hormone receptors (subtype HR3) and worst when they expressed none of the receptors (subtype HR0). Together, these data provide an ontological classification scheme associated with patient survival differences and provides actionable insights for treating breast tumors

    The Assembly of the Plasmodial PLP Synthase Complex Follows a Defined Course

    Get PDF
    Background: Plants, fungi, bacteria and the apicomplexan parasite Plasmodium falciparum are able to synthesize vitamin B6 de novo, whereas mammals depend upon the uptake of this essential nutrient from their diet. The active form of vitamin B6 is pyridoxal 5-phosphate (PLP). For its synthesis two enzymes, Pdx1 and Pdx2, act together, forming a multimeric complex consisting of 12 Pdx1 and 12 Pdx2 protomers. Methodology/Principal Findings: Here we report amino acid residues responsible for stabilization of the structural and enzymatic integrity of the plasmodial PLP synthase, identified by using distinct mutational analysis and biochemical approaches. Residues R85, H88 and E91 (RHE) are located at the Pdx1:Pdx1 interface and play an important role in Pdx1 complex assembly. Mutation of these residues to alanine impedes both Pdx1 activity and Pdx2 binding. Furthermore, changing D26, K83 and K151 (DKK), amino acids from the active site of Pdx1, to alanine obstructs not only enzyme activity but also formation of the complex. In contrast to the monomeric appearance of the RHE mutant, alteration of the DKK residues results in a hexameric assembly, and does not affect Pdx2 binding or its activity. While the modelled position of K151 is distal to the Pdx1:Pdx1 interface, it affects the assembly of hexameric Pdx1 into a functional dodecamer, which is crucial for PLP synthesis. Conclusions/Significance: Taken together, our data suggest that the assembly of a functional Pdx1:Pdx2 complex follows
    • 

    corecore