16 research outputs found

    Perceptual organization and consciousness

    Get PDF
    With chapter written by leading researchers in the field, this is the state-of-the-art reference work on this topic, and will be so for many years to come

    Variability in visual cortex size reflects tradeoff between local orientation sensitivity and global orientation modulation

    Get PDF
    The surface area of early visual cortices varies several fold across healthy adult humans and is genetically heritable. But the functional consequences of this anatomical variability are still largely unexplored. Here we show that interindividual variability in human visual cortical surface area reflects a tradeoff between sensitivity to visual details and susceptibility to visual context. Specifically, individuals with larger primary visual cortices can discriminate finer orientation differences, whereas individuals with smaller primary visual cortices experience stronger perceptual modulation by global orientation contexts. This anatomically correlated tradeoff between discrimination sensitivity and contextual modulation of orientation perception, however, does not generalize to contrast perception or luminance perception. Neural field simulations based on a scaling of intracortical circuits reproduce our empirical observations. Together our findings reveal a feature-specific shift in the scope of visual perception from context-oriented to detail-oriented with increased visual cortical surface area

    Investigating Representations of Facial Identity in Human Ventral Visual Cortex with Transcranial Magnetic Stimulation

    Get PDF
    The occipital face area (OFA) is face-selective. This enhanced activation to faces could reflect either generic face and shape-related processing or high-level conceptual processing of identity. Here we examined these two possibilities using a state-dependent transcranial magnetic stimulation (TMS) paradigm. The lateral occipital (LO) cortex which is activated non-selectively by various types of objects served as a control site. We localized OFA and LO on a per-participant basis using functional MRI. We then examined whether TMS applied to either of these regions affected the ability of participants to decide whether two successively presented and physically different face images were of the same famous person or different famous people. TMS was applied during the delay between first and second face presentations to investigate whether neuronal populations in these regions played a causal role in mediating the behavioral effects of identity repetition. Behaviorally we found a robust identity repetition effect, with shorter reaction times (RTs) when identity was repeated, regardless of the fact that the pictures were physically different. Surprisingly, TMS applied over LO (but not OFA) modulated overall RTs, compared to the No-TMS condition. But critically, we found no effects of TMS to either area that were modulated by identity repetition. Thus, we found no evidence to suggest that OFA or LO contain neuronal representations selective for the identity of famous faces which play a causal role in identity processing. Instead, these brain regions may be involved in the processing of more generic features of their preferred stimulus categories

    Assessing cognitive dysfunction in Parkinson's disease: An online tool to detect visuo-perceptual deficits.

    Get PDF
    BackgroundPeople with Parkinson's disease (PD) who develop visuo-perceptual deficits are at higher risk of dementia, but we lack tests that detect subtle visuo-perceptual deficits and can be performed by untrained personnel. Hallucinations are associated with cognitive impairment and typically involve perception of complex objects. Changes in object perception may therefore be a sensitive marker of visuo-perceptual deficits in PD.ObjectiveWe developed an online platform to test visuo-perceptual function. We hypothesised that (1) visuo-perceptual deficits in PD could be detected using online tests, (2) object perception would be preferentially affected, and (3) these deficits would be caused by changes in perception rather than response bias.MethodsWe assessed 91 people with PD and 275 controls. Performance was compared using classical frequentist statistics. We then fitted a hierarchical Bayesian signal detection theory model to a subset of tasks.ResultsPeople with PD were worse than controls at object recognition, showing no deficits in other visuo-perceptual tests. Specifically, they were worse at identifying skewed images (P < .0001); at detecting hidden objects (P = .0039); at identifying objects in peripheral vision (P < .0001); and at detecting biological motion (P = .0065). In contrast, people with PD were not worse at mental rotation or subjective size perception. Using signal detection modelling, we found this effect was driven by change in perceptual sensitivity rather than response bias.ConclusionsOnline tests can detect visuo-perceptual deficits in people with PD, with object recognition particularly affected. Ultimately, visuo-perceptual tests may be developed to identify at-risk patients for clinical trials to slow PD dementia. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

    Assessing cognitive dysfunction in Parkinson's disease: an online tool to detect visuo-perceptual deficits

    Get PDF
    Background: People with Parkinson's disease (PD) who develop visuo‐perceptual deficits are at higher risk of dementia, but we lack tests that detect subtle visuo‐perceptual deficits and can be performed by untrained personnel. Hallucinations are associated with cognitive impairment and typically involve perception of complex objects. Changes in object perception may therefore be a sensitive marker of visuo‐perceptual deficits in PD. Objective: We developed an online platform to test visuo‐perceptual function. We hypothesised that (1) visuo‐perceptual deficits in PD could be detected using online tests, (2) object perception would be preferentially affected, and (3) these deficits would be caused by changes in perception rather than response bias. Methods: We assessed 91 people with PD and 275 controls. Performance was compared using classical frequentist statistics. We then fitted a hierarchical Bayesian signal detection theory model to a subset of tasks. Results: People with PD were worse than controls at object recognition, showing no deficits in other visuo‐perceptual tests. Specifically, they were worse at identifying skewed images (P  < .0001); at detecting hidden objects (P  = .0039); at identifying objects in peripheral vision (P  < .0001); and at detecting biological motion (P  = .0065). In contrast, people with PD were not worse at mental rotation or subjective size perception. Using signal detection modelling, we found this effect was driven by change in perceptual sensitivity rather than response bias. Conclusions: Online tests can detect visuo‐perceptual deficits in people with PD, with object recognition particularly affected. Ultimately, visuo‐perceptual tests may be developed to identify at‐risk patients for clinical trials to slow PD dementia. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

    Knowing with Which Eye We See: Utrocular Discrimination and Eye-Specific Signals in Human Visual Cortex

    Get PDF
    Neurophysiological and behavioral reports converge to suggest that monocular neurons in the primary visual cortex are biased toward low spatial frequencies, while binocular neurons favor high spatial frequencies. Here we tested this hypothesis with functional magnetic resonance imaging (fMRI). Human participants viewed flickering gratings at one of two spatial frequencies presented to either the left or the right eye, and judged which of the two eyes was being stimulated (utrocular discrimination). Using multivoxel pattern analysis we found that local spatial patterns of signals in primary visual cortex (V1) allowed successful decoding of the eye-of-origin. Decoding was above chance for low but not high spatial frequencies, confirming the presence of a bias reported by animal studies in human visual cortex. Behaviorally, we found that reliable judgment of the eye-of-origin did not depend on spatial frequency. We further analyzed the mean response in visual cortex to our stimuli and revealed a weak difference between left and right eye stimulation. Our results are thus consistent with the interpretation that participants use overall levels of neural activity in visual cortex, perhaps arising due to local luminance differences, to judge the eye-of-origin. Taken together, we show that it is possible to decode eye-specific voxel pattern information in visual cortex but, at least in healthy participants with normal binocular vision, these patterns are unrelated to awareness of which eye is being stimulated

    Brief daily binocular vision prevents monocular deprivation effects in visual cortex

    No full text
    Even short periods of early monocular deprivation result in reduced cortical representation and visual acuity of the deprived eye. However, we have shown recently that the dramatic deprivation effects on vision can be prevented entirely if the animal receives a brief period of concordant binocular vision each day. We examine here the extent to which the cortical deprivation effects can be counteracted by daily periods of normal experience. Cats received variable daily regimens of monocular deprivation (by wearing a mask) and binocular vision. We subsequently assessed visual cortex function with optical imaging of intrinsic signals and visually evoked potential recordings. Regardless of the overall length of visual experience, daily binocular vision for as little as 30 min, but no less, allowed normal ocular dominance and visual responses to be maintained despite several times longer periods of deprivation. Thus, the absolute amount of daily binocular vision rather than its relative share of the daily exposure determined the outcome. When 30 min of binocular exposure was broken up into two 15-min blocks flanking the deprivation period, ocular dominance resembled that of animals with only 15 min of binocular vision, suggesting that binocular experience must be continuous to be most effective. Our results demonstrate that normal experience is clearly more efficacious in maintaining normal functional architecture of the visual cortex than abnormal experience is in altering it. The beneficial effects of very short periods of binocular vision may prevent any long-term effects (amblyopia) from brief periods of compromised vision through injury or infection during development
    corecore