126 research outputs found

    Crystal structure of the anthrax lethal factor

    Full text link
    Lethal factor (LF) is a protein (relative molecular mass 90,000) that is critical in the pathogenesis of anthrax(1-3). It is a highly specific protease that cleaves members of the mitogen-activated protein kinase kinase (MAPKK) family near to their amino termini, leading to the inhibition of one or more signalling pathways(4-6). Here we describe the crystal structure of LF and its complex with the N terminus of MAPKK-2. LF comprises four domains: domain I binds the membrane-translocating component of anthrax toxin, the protective antigen (PA); domains II, III and IV together create a long deep groove that holds the 16-residue N-terminal tail of MAPKK-2 before cleavage. Domain II resembles the ADP-ribosylating toxin from Bacillus cereus, but the active site has been mutated and recruited to augment substrate recognition. Domain III is inserted into domain II, and seems to have arisen from a repeated duplication of a structural element of domain II. Domain IV is distantly related to the zinc metalloprotease family, and contains the catalytic centre; it also resembles domain I. The structure thus reveals a protein that has evolved through a process of gene duplication, mutation and fusion, into an enzyme with high and unusual specificity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62772/1/414229a0.pd

    Metabolic regulation of the maize rhizobiome by benzoxazinoids

    Get PDF
    The rhizobiome is an important regulator of plant growth and health. Plants shape their rhizobiome communities through production and release of primary and secondary root metabolites. Benzoxazinoids (BXs) are common tryptophan-derived secondary metabolites in grasses that regulate belowground and aboveground biotic interactions. In addition to their biocidal activity, BXs can regulate plant–biotic interactions as semiochemicals or within-plant defence signals. However, the full extent and mechanisms by which BXs shape the root-associated microbiome has remained largely unexplored. Here, we have taken a global approach to examine the regulatory activity of BXs on the maize root metabolome and associated bacterial and fungal communities. Using untargeted mass spectrometry analysis in combination with prokaryotic and fungal amplicon sequencing, we compared the impacts of three genetic mutations in different steps in the BX pathway. We show that BXs regulate global root metabolism and concurrently influence the rhizobiome in a root type-dependent manner. Correlation analysis between BX-controlled root metabolites and bacterial taxa suggested a dominant role for BX-dependent metabolites, particularly flavonoids, in constraining a range of soil microbial taxa, while stimulating methylophilic bacteria. Our study supports a multilateral model by which BXs control root–microbe interactions via a global regulatory function in root secondary metabolism

    Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes

    Get PDF
    Biofuels synthesized from renewable resources are of increasing interest because of global energy and environmental problems. We have previously demonstrated production of higher alcohols from Escherichia coli using a 2-keto acid-based pathway. Here, we have compared the effect of various alcohol dehydrogenases (ADH) for the last step of the isobutanol production. E. coli has the yqhD gene which encodes a broad-range ADH. Isobutanol production significantly decreased with the deletion of yqhD, suggesting that the yqhD gene on the genome contributed to isobutanol production. The adh genes of two bacteria and one yeast were also compared in E. coli harboring the isobutanol synthesis pathway. Overexpression of yqhD or adhA in E. coli showed better production than ADH2, a result confirmed by activity measurements with isobutyraldehyde

    Recent artificial selection in U.S. Jersey cattle impacts autozygosity levels of specific genomic regions

    Get PDF
    Background: Genome signatures of artificial selection in U.S. Jersey cattle were identified by examining changes in haplotype homozygosity for a resource population of animals born between 1953 and 2007. Genetic merit of this population changed dramatically during this period for a number of traits, especially milk yield. The intense selection underlying these changes was achieved through extensive use of artificial insemination (AI), which also increased consanguinity of the population to a few superior Jersey bulls. As a result, allele frequencies are shifted for many contemporary animals, and in numerous cases to a homozygous state for specific genomic regions. The goal of this study was to identify those selection signatures that occurred after extensive use of AI since the 1960, using analyses of shared haplotype segments or Runs of Homozygosity. When combined with animal birth year information, signatures of selection associated with economically important traits were identified and compared to results from an extended haplotype homozygosity analysis. Results: Overall, our results reveal that more recent selection increased autozygosity across the entire genome, but some specific regions increased more than others. A genome-wide scan identified more than 15 regions with a substantial change in autozygosity. Haplotypes found to be associated with increased milk, fat and protein yield in U.S. Jersey cattle also consistently increased in frequency. Conclusions: The analyses used in this study was able to detect directional selection over the last few decades when individual production records for Jersey animals were available

    phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta.

    Get PDF
    The combination of algorithms from the structure-modeling field with those of crystallographic structure determination can broaden the range of templates that are useful for structure determination by the method of molecular replacement. Automated tools in phenix.mr_rosetta simplify the application of these combined approaches by integrating Phenix crystallographic algorithms and Rosetta structure-modeling algorithms and by systematically generating and evaluating models with a combination of these methods. The phenix.mr_rosetta algorithms can be used to automatically determine challenging structures. The approaches used in phenix.mr_rosetta are described along with examples that show roles that structure-modeling can play in molecular replacement

    Macro-to-Micro Structural Proteomics: Native Source Proteins for High-Throughput Crystallization

    Get PDF
    Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography

    To automate or not to automate: this is the question

    Get PDF
    New protocols and instrumentation significantly boost the outcome of structural biology, which has resulted in significant growth in the number of deposited Protein Data Bank structures. However, even an enormous increase of the productivity of a single step of the structure determination process may not significantly shorten the time between clone and deposition or publication. For example, in a medium size laboratory equipped with the LabDB and HKL-3000 systems, we show that automation of some (and integration of all) steps of the X-ray structure determination pathway is critical for laboratory productivity. Moreover, we show that the lag period after which the impact of a technology change is observed is longer than expected

    A Novel Dimeric Inhibitor Targeting Beta2GPI in Beta2GPI/Antibody Complexes Implicated in Antiphospholipid Syndrome

    Get PDF
    Background: b2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of b2GPI generated by anti-b2GPI antibodies is pathologically important, in contrast to monomeric b2GPI which is abundant in plasma. Principal Findings: We created a dimeric inhibitor, A1-A1, to selectively target b2GPI in b2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1) and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of b2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of b2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of b2GPI present in human serum, b2GPI purified from human plasma and the individual domain V of b2GPI. We demonstrated that when b2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of b2GPI to cardiolipin, regardless of the source of b2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of b2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-b2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric b2GPI to cardiolipin. Conclusions: Our results suggest that the approach of using a dimeric inhibitor to block b2GPI in the pathologica

    Efficient representation of uncertainty in multiple sequence alignments using directed acyclic graphs

    Get PDF
    Background A standard procedure in many areas of bioinformatics is to use a single multiple sequence alignment (MSA) as the basis for various types of analysis. However, downstream results may be highly sensitive to the alignment used, and neglecting the uncertainty in the alignment can lead to significant bias in the resulting inference. In recent years, a number of approaches have been developed for probabilistic sampling of alignments, rather than simply generating a single optimum. However, this type of probabilistic information is currently not widely used in the context of downstream inference, since most existing algorithms are set up to make use of a single alignment. Results In this work we present a framework for representing a set of sampled alignments as a directed acyclic graph (DAG) whose nodes are alignment columns; each path through this DAG then represents a valid alignment. Since the probabilities of individual columns can be estimated from empirical frequencies, this approach enables sample-based estimation of posterior alignment probabilities. Moreover, due to conditional independencies between columns, the graph structure encodes a much larger set of alignments than the original set of sampled MSAs, such that the effective sample size is greatly increased. Conclusions The alignment DAG provides a natural way to represent a distribution in the space of MSAs, and allows for existing algorithms to be efficiently scaled up to operate on large sets of alignments. As an example, we show how this can be used to compute marginal probabilities for tree topologies, averaging over a very large number of MSAs. This framework can also be used to generate a statistically meaningful summary alignment; example applications show that this summary alignment is consistently more accurate than the majority of the alignment samples, leading to improvements in downstream tree inference. Implementations of the methods described in this article are available at http://statalign.github.io/WeaveAlign webcite
    corecore