7 research outputs found

    Influenza Epidemiology And Influenza Vaccine Effectiveness During The 2015-2016 Season: Results From The Global Influenza Hospital Surveillance Network

    No full text
    BackgroundThe Global Influenza Hospital Surveillance Network is an international platform whose primary objective is to study severe cases of influenza requiring hospitalization.MethodsDuring the 2015-2016 influenza season, 11 sites in the Global Influenza Hospital Surveillance Network in nine countries (Russian Federation, Czech Republic, Turkey, France, China, Spain, Mexico, India, and Brazil) participated in a prospective, active-surveillance, hospital-based epidemiological study. Influenza infection was confirmed by reverse transcription-polymerase chain reaction. Influenza vaccine effectiveness (IVE) against laboratory-confirmed influenza was estimated using a test-negative approach.Results9882 patients with laboratory results were included of which 2415 (24.4%) were positive for influenza, including 1415 (14.3%) for A(H1N1)pdm09, 235 (2.4%) for A(H3N2), 180 (1.8%) for A not subtyped, 45 (0.5%) for B/Yamagata-lineage, 532 (5.4%) for B/Victoria-lineage, and 33 (0.3%) for B not subtyped. Of included admissions, 39% were<5years of age and 67% had no underlying conditions. The odds of being admitted with influenza were higher among pregnant than non-pregnant women (odds ratio, 2.82 [95% confidence interval (CI), 1.90 to 4.19]). Adjusted IVE against influenza-related hospitalization was 16.3% (95% CI, 0.4 to 29.7). Among patients targeted for influenza vaccination, adjusted IVE against hospital admission with influenza was 16.2% (95% CI, -3.6 to 32.2) overall, 23.0% (95% CI, -3.3 to 42.6) against A(H1N1)pdm09, and-25.6% (95% CI, -86.3 to 15.4) against B/Victoria lineage.ConclusionsThe 2015-2016 influenza season was dominated by A(H1N1)pdm09 and B/Victoria-lineage. Hospitalization with influenza often occurred in healthy and young individuals, and pregnant women were at increased risk of influenza-related hospitalization. Influenza vaccines provided low to moderate protection against hospitalization with influenza and no protection against the predominant circulating B lineage, highlighting the need for more effective and broader influenza vaccines.Wo

    2012/13 influenza vaccine effectiveness against hospitalised influenza A(H1N1)pdm09, A(H3N2) and B: estimates from a European network of hospitals

    Get PDF
    While influenza vaccines aim to decrease the incidence of severe influenza among high-risk groups, evidence of influenza vaccine effectiveness (IVE) among the influenza vaccine target population is sparse. We conducted a multicentre test-negative case\u2013control study to estimate IVE against hospitalised laboratoryconfirmed influenza in the target population in 18 hospitals in France, Italy, Lithuania and the Navarre and Valencia regions in Spain. All hospitalised patients aged 6518 years, belonging to the target population presenting with influenza-like illness symptom onset within seven days were swabbed. Patients positive by reverse transcription polymerase chain reaction for influenza virus were cases and those negative were controls. Using logistic regression, we calculated IVE for each influenza virus subtype and adjusted it for month of symptom onset, study site, age and chronic conditions. Of the 1,972 patients included, 116 were positive for influenza A(H1N1)pdm09, 58 for A(H3N2) and 232 for influenza B. Adjusted IVE was 21.3% (95% confidence interval (CI): -25.2 to 50.6; n=1,628), 61.8% (95% CI: 26.8 to 80.0; n=557) and 43.1% (95% CI: 21.2 to 58.9; n=1,526) against influenza A(H1N1) pdm09, A(H3N2) and B respectively. Our results suggest that the 2012/13 IVE was moderate against influenza A(H3N2) and B and low against influenza A(H1N1) pdm09

    Influenza Epidemiology And Influenza Vaccine Effectiveness During The 2016-2017 Season In The Global Influenza Hospital Surveillance Network (Gihsn)

    No full text
    BackgroundThe Global Influenza Hospital Surveillance Network (GIHSN) aims to determine the burden of severe influenza disease and Influenza Vaccine Effectiveness (IVE). This is a prospective, active surveillance and hospital-based epidemiological study to collect epidemiological data in the GIHSN. In the 2016-2017 influenza season, 15 sites in 14 countries participated in the GIHSN, although the analyses could not be performed in 2 sites. A common core protocol was used in order to make results comparable. Here we present the results of the GIHSN 2016-2017 influenza season.MethodsA RT-PCR test was performed to all patients that accomplished the requirements detailed on a common core protocol. Patients admitted were included in the study after signing the informed consent, if they were residents, not institutionalised, not discharged in the previous 30days from other hospitalisation with symptoms onset within the 7days prior to admission. Patients 5years old or more must also complied the Influenza-Like Illness definition. A test negative-design was implemented to perform IVE analysis. IVE was estimated using a logistic regression model, with the formula IVE=(1-aOR)x100, where aOR is the adjusted Odds Ratio comparing cases and controls.ResultsAmong 21,967 screened patients, 10,140 (46.16%) were included, as they accomplished the inclusion criteria, and tested, and therefore 11,827 (53.84%) patients were excluded. Around 60% of all patients included with laboratory results were recruited at 3 sites. The predominant strain was A(H3N2), detected in 63.6% of the cases (1840 patients), followed by B/Victoria, in 21.3% of the cases (618 patients). There were 2895 influenza positive patients (28.6% of the included patients). A(H1N1)pdm09 strain was mainly found in Mexico. IVE could only be performed in 6 sites separately. Overall IVE was 27.24 (95% CI 15.62-37.27. Vaccination seemed to confer better protection against influenza B and in people 2-4years, or 85years old or older. The aOR for hospitalized and testing positive for influenza was 3.02 (95% CI 1.59-5.76) comparing pregnant with non-pregnant women.ConclusionsVaccination prevented around 1 in 4 hospitalisations with influenza. Sparse numbers didn't allow estimating IVE in all sites separately. Pregnancy was found a risk factor for influenza, having 3 times more risk of being admitted with influenza for pregnant women.Wo

    Repeated seasonal influenza vaccination among elderly in Europe: Effects on laboratory confirmed hospitalised influenza

    No full text
    In Europe, annual influenza vaccination is recommended to elderly. From 2011 to 2014 and in 2015\u201316, we conducted a multicentre test negative case control study in hospitals of 11 European countries to measure influenza vaccine effectiveness (IVE) against laboratory confirmed hospitalised influenza among people aged 6565 years. We pooled four seasons data to measure IVE by past exposures to influenza vaccination. We swabbed patients admitted for clinical conditions related to influenza with onset of severe acute respiratory infection 647 days before admission. Cases were patients RT-PCR positive for influenza virus and controls those negative for any influenza virus. We documented seasonal vaccination status for the current season and the two previous seasons. We recruited 5295 patients over the four seasons, including 465A(H1N1)pdm09, 642A(H3N2), 278 B case-patients and 3910 controls. Among patients unvaccinated in both previous two seasons, current seasonal IVE (pooled across seasons) was 30% (95%CI: 1235 to 64), 8% (95%CI: 1294 to 56) and 33% (95%CI: 1243 to 68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Among patients vaccinated in both previous seasons, current seasonal IVE (pooled across seasons) was 121% (95%CI: 1280 to 43), 37% (95%CI: 7\u201357) and 43% (95%CI: 1\u201368) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Our results suggest that, regardless of patients\u2019 recent vaccination history, current seasonal vaccine conferred some protection to vaccinated patients against hospitalisation with influenza A(H3N2) and B. Vaccination of patients already vaccinated in both the past two seasons did not seem to be effective against A(H1N1)pdm09. To better understand the effect of repeated vaccination, engaging in large cohort studies documenting exposures to vaccine and natural infection is needed

    Ezetimibe added to statin therapy after acute coronary syndromes

    Get PDF
    BACKGROUND: Statin therapy reduces low-density lipoprotein (LDL) cholesterol levels and the risk of cardiovascular events, but whether the addition of ezetimibe, a nonstatin drug that reduces intestinal cholesterol absorption, can reduce the rate of cardiovascular events further is not known. METHODS: We conducted a double-blind, randomized trial involving 18,144 patients who had been hospitalized for an acute coronary syndrome within the preceding 10 days and had LDL cholesterol levels of 50 to 100 mg per deciliter (1.3 to 2.6 mmol per liter) if they were receiving lipid-lowering therapy or 50 to 125 mg per deciliter (1.3 to 3.2 mmol per liter) if they were not receiving lipid-lowering therapy. The combination of simvastatin (40 mg) and ezetimibe (10 mg) (simvastatin-ezetimibe) was compared with simvastatin (40 mg) and placebo (simvastatin monotherapy). The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, unstable angina requiring rehospitalization, coronary revascularization ( 6530 days after randomization), or nonfatal stroke. The median follow-up was 6 years. RESULTS: The median time-weighted average LDL cholesterol level during the study was 53.7 mg per deciliter (1.4 mmol per liter) in the simvastatin-ezetimibe group, as compared with 69.5 mg per deciliter (1.8 mmol per liter) in the simvastatin-monotherapy group (P<0.001). The Kaplan-Meier event rate for the primary end point at 7 years was 32.7% in the simvastatin-ezetimibe group, as compared with 34.7% in the simvastatin-monotherapy group (absolute risk difference, 2.0 percentage points; hazard ratio, 0.936; 95% confidence interval, 0.89 to 0.99; P = 0.016). Rates of pre-specified muscle, gallbladder, and hepatic adverse effects and cancer were similar in the two groups. CONCLUSIONS: When added to statin therapy, ezetimibe resulted in incremental lowering of LDL cholesterol levels and improved cardiovascular outcomes. Moreover, lowering LDL cholesterol to levels below previous targets provided additional benefit
    corecore