20,621 research outputs found
Web ontology representation and reasoning via fragments of set theory
In this paper we use results from Computable Set Theory as a means to
represent and reason about description logics and rule languages for the
semantic web.
Specifically, we introduce the description logic \mathcal{DL}\langle
4LQS^R\rangle(\D)--admitting features such as min/max cardinality constructs
on the left-hand/right-hand side of inclusion axioms, role chain axioms, and
datatypes--which turns out to be quite expressive if compared with
\mathcal{SROIQ}(\D), the description logic underpinning the Web Ontology
Language OWL. Then we show that the consistency problem for
\mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is decidable by
reducing it, through a suitable translation process, to the satisfiability
problem of the stratified fragment of set theory, involving variables
of four sorts and a restricted form of quantification. We prove also that,
under suitable not very restrictive constraints, the consistency problem for
\mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is
\textbf{NP}-complete. Finally, we provide a -translation of rules
belonging to the Semantic Web Rule Language (SWRL)
Some closure operations in Zariski-Riemann spaces of valuation domains: a survey
In this survey we present several results concerning various topologies that
were introduced in recent years on spaces of valuation domains
The Highest Redshift Relativistic Jets
We describe our efforts to understand large-scale (10's-100's kpc)
relativistic jet systems through observations of the highest-redshift quasars.
Results from a VLA survey search for radio jets in ~30 z>3.4 quasars are
described along with new Chandra observations of 4 selected targets.Comment: 5 pages, 2 figures, to appear in Extragalactic Jets: Theory and
Observation from Radio to Gamma Ray, Eds. T.A. Rector and D.S. De Youn
Condensation of Excitons in Cu2O at Ultracold Temperatures: Experiment and Theory
We present experiments on the luminescence of excitons confined in a
potential trap at milli-Kelvin bath temperatures under cw-excitation. They
reveal several distinct features like a kink in the dependence of the total
integrated luminescence intensity on excitation laser power and a bimodal
distribution of the spatially resolved luminescence. Furthermore, we discuss
the present state of the theoretical description of Bose-Einstein condensation
of excitons with respect to signatures of a condensate in the luminescence. The
comparison of the experimental data with theoretical results with respect to
the spatially resolved as well as the integrated luminescence intensity shows
the necessity of taking into account a Bose-Einstein condensed excitonic phase
in order to understand the behaviour of the trapped excitons.Comment: 41 pages, 23 figure
Nonlinear field theories during homogeneous spatial dilation
The effect of a uniform dilation of space on stochastically driven nonlinear
field theories is examined. This theoretical question serves as a model problem
for examining the properties of nonlinear field theories embedded in expanding
Euclidean Friedmann-Lema\^{\i}tre-Robertson-Walker metrics in the context of
cosmology, as well as different systems in the disciplines of statistical
mechanics and condensed matter physics. Field theories are characterized by the
speed at which they propagate correlations within themselves. We show that for
linear field theories correlations stop propagating if and only if the speed at
which the space dilates is higher than the speed at which correlations
propagate. The situation is in general different for nonlinear field theories.
In this case correlations might stop propagating even if the velocity at which
space dilates is lower than the velocity at which correlations propagate. In
particular, these results imply that it is not possible to characterize the
dynamics of a nonlinear field theory during homogeneous spatial dilation {\it a
priori}. We illustrate our findings with the nonlinear Kardar-Parisi-Zhang
equation
Mode coupling control in a resonant device: application to solid-state ring lasers
A theoretical and experimental investigation of the effects of mode coupling
in a resonant macro- scopic quantum device is achieved in the case of a ring
laser. In particular, we show both analytically and experimentally that such a
device can be used as a rotation sensor provided the effects of mode coupling
are controlled, for example through the use of an additional coupling. A
possible general- ization of this example to the case of another resonant
macroscopic quantum device is discussed
Recognizing Members of the Tournament Equilibrium Set is NP-hard
A recurring theme in the mathematical social sciences is how to select the
"most desirable" elements given a binary dominance relation on a set of
alternatives. Schwartz's tournament equilibrium set (TEQ) ranks among the most
intriguing, but also among the most enigmatic, tournament solutions that have
been proposed so far in this context. Due to its unwieldy recursive definition,
little is known about TEQ. In particular, its monotonicity remains an open
problem up to date. Yet, if TEQ were to satisfy monotonicity, it would be a
very attractive tournament solution concept refining both the Banks set and
Dutta's minimal covering set. We show that the problem of deciding whether a
given alternative is contained in TEQ is NP-hard.Comment: 9 pages, 3 figure
Maxwell-Chern-Simons Theory With Boundary
The Maxwell-Chern-Simons (MCS) theory with planar boundary is considered. The
boundary is introduced according to Symanzik's basic principles of locality and
separability. A method of investigation is proposed, which, avoiding the
straight computation of correlators, is appealing for situations where the
computation of propagators, modified by the boundary, becomes quite complex.
For MCS theory, the outcome is that a unique solution exists, in the form of
chiral conserved currents, satisfying a Kac-Moody algebra, whose central charge
does not depend on the Maxwell term.Comment: 30 page
The molecular genetic analysis of the expanding pachyonychia congenita case collection
BACKGROUND: Pachyonychia congenita (PC) is a rare autosomal dominant keratinizing disorder characterized by severe, painful, palmoplantar keratoderma and nail dystrophy, often accompanied by oral leucokeratosis, cysts and follicular keratosis. It is caused by mutations in one of five keratin genes: KRT6A, KRT6B, KRT6C, KRT16 or KRT17. OBJECTIVES: To identify mutations in 84 new families with a clinical diagnosis of PC, recruited by the International Pachyonychia Congenita Research Registry during the last few years. METHODS: Genomic DNA isolated from saliva or peripheral blood leucocytes was amplified using primers specific for the PC-associated keratin genes and polymerase chain reaction products were directly sequenced. RESULTS: Mutations were identified in 84 families in the PC-associated keratin genes, comprising 46 distinct keratin mutations. Fourteen were previously unreported mutations, bringing the total number of different keratin mutations associated with PC to 105. CONCLUSIONS: By identifying mutations in KRT6A, KRT6B, KRT6C, KRT16 or KRT17, this study has confirmed, at the molecular level, the clinical diagnosis of PC in these families
Fluid physics, thermodynamics, and heat transfer experiments in space
An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation
- …