In this paper we use results from Computable Set Theory as a means to
represent and reason about description logics and rule languages for the
semantic web.
Specifically, we introduce the description logic \mathcal{DL}\langle
4LQS^R\rangle(\D)--admitting features such as min/max cardinality constructs
on the left-hand/right-hand side of inclusion axioms, role chain axioms, and
datatypes--which turns out to be quite expressive if compared with
\mathcal{SROIQ}(\D), the description logic underpinning the Web Ontology
Language OWL. Then we show that the consistency problem for
\mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is decidable by
reducing it, through a suitable translation process, to the satisfiability
problem of the stratified fragment 4LQSR of set theory, involving variables
of four sorts and a restricted form of quantification. We prove also that,
under suitable not very restrictive constraints, the consistency problem for
\mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is
\textbf{NP}-complete. Finally, we provide a 4LQSR-translation of rules
belonging to the Semantic Web Rule Language (SWRL)