5,516 research outputs found

    A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes

    Get PDF
    Peptides that are antigenic for T lymphocytes are ligands for two receptors, the class I or II glycoproteins that are encoded by genes in the major histocompatibility complex, and the idiotypic / chain T-cell antigen receptor1–9. That a peptide must bind to an MHC molecule to interact with a T-cell antigen receptor is the molecular basis of the MHC restriction of antigen-recognition by T lymphocytes10,11. In such a trimolecular interaction the amino-acid sequence of the peptide must specify the contact with both receptors: agretope residues bind to the MHC receptor and epitope residues bind to the T-cell antigen receptor12,13. From a compilation of known antigenic peptides, two algorithms have been proposed to predict antigenic sites in proteins. One algorithm uses linear motifs in the sequence14, whereas the other considers peptide conformation and predicts antigenicity for amphipathic -helices15,16. We report here that a systematic delimitation of an antigenic site precisely identifies a predicted pentapeptide motif as the minimal antigenic determinant presented by a class I MHC molecule and recognized by a cytolytic T lymphocyte clone

    Objective Evaluation of Proliferative Diabetic Retinopathy Using OCT

    Get PDF
    PURPOSE: To present the routine use of OCT and OCT angiography (OCTA) for the objective diagnosis and monitoring of proliferative diabetic retinopathy (PDR). DESIGN: Retrospective, observational case series. PARTICIPANTS: Patients with diabetic retinopathy imaged using a standardized PDR protocol. METHODS: Patients routinely imaged with a standardized PDR protocol between March 2017 and January 2019 were included. This included a 12×9-mm structural OCT volume centered on the macula and a 6×6-mm OCTA scan centered on the optic nerve head obtained using a Topcon swept-source system (DRI OCT-1 Triton, Topcon, Tokyo, Japan). Ultra-widefield fluorescein angiography (FA) was also performed when clinically indicated. The ground truth for each case was determined by merging the findings from biomicroscopy and imaging modalities to generate the maximum level of detection for each finding. MAIN OUTCOME MEASURES: Detection rates of new-onset, regression, and reactivation of neovascularization of the disc (NVD) and neovascularization elsewhere (NVE) using different modalities (biomicroscopy/color photography, structural OCT, B-scan OCTA, en face OCTA). Detection of progression of tractional retinal detachment (TRD). RESULTS: A total of 383 eyes of 204 patients were evaluated. After excluding patients without PDR or with insufficient image quality, 47 eyes of 35 patients were included. For the detection of new-onset NVD and NVE, structural OCT had the highest detection rate (100%) of all modalities. However, for the detection of regression or reactivation of neovascularization (NV), B-scan OCTA had the highest detection rate (100%). Structural OCT detected regression only in 45.5% of cases, resulting in a low detection rate of reactivation (12.5%). Among 10 eyes with TRD, OCT detected fovea-threatening TRD during follow-up in 7 eyes, resulting in vitrectomy. CONCLUSIONS: This study demonstrates the utility of novel multimodal imaging in the daily management of patients with PDR. Posterior pole structural OCT had the best detection rate for NV, and B-scan OCTA showed the most potential for objective monitoring of disease after treatment

    An Alternative Paper Based Tissue Washing Method for Mass Spectrometry Imaging: Localized Washing and Fragile Tissue Analysis

    Get PDF
    Surface treatment of biological tissue sections improves detection of peptides and proteins for mass spectrometry imaging. However, liquid surface treatments can result in diffusion of surface analytes and fragile tissue sections can be easily damaged by typical washing solvents. Here, we present a new surface washing procedure for mass spectrometry imaging. This procedure uses solvent wetted fiber-free paper to enable local washing of tissue sections for mass spectrometry imaging and tissue profiling experiments. In addition, the method allows fragile tissues that cannot be treated by conventional washing techniques to be analyzed by mass spectrometry imaging

    Simple models of the chemical field around swimming plankton

    Get PDF
    Background. Cervical cancer is the fourth most common cancer in women, and we recently reported human leukocyte antigen (HLA) alleles showing strong associations with cervical neoplasia risk and protection. HLA ligands are recognized by killer immunoglobulin-like receptors (KIRs) expressed on a range of immune cell subsets, governing their proinflammatory activity. We hypothesized that the inheritance of particular HLA-KIR combinations would increase cervical neoplasia risk. Methods. Here, we used HLA and KIR dosages imputed from single-nucleotide polymorphism genotype data from 2143 cervical neoplasia cases and 13 858 healthy controls of European decent. Results. The following 4 novel HLA alleles were identified in association with cervical neoplasia, owing to their linkage disequilibrium with known cervical neoplasia-associated HLA-DRB1 alleles: HLA-DRB3*9901 (odds ratio [OR], 1.24; P = 2.49 × 10−9), HLA-DRB5*0101 (OR, 1.29; P = 2.26 × 10−8), HLA-DRB5*9901 (OR, 0.77; P = 1.90 × 10−9), and HLA-DRB3*0301 (OR, 0.63; P = 4.06 × 10−5). We also found that homozygosity of HLA-C1 group alleles is a protective factor for human papillomavirus type 16 (HPV16)-related cervical neoplasia (C1/C1; OR, 0.79; P = .005). This protective association was restricted to carriers of either KIR2DL2 (OR, 0.67; P = .00045) or KIR2DS2 (OR, 0.69; P = .0006). Conclusions. Our findings suggest that HLA-C1 group alleles play a role in protecting against HPV16-related cervical neoplasia, mainly through a KIR-mediated mechanism

    Mechanical properties of β-HMX

    Get PDF
    Background: For a full understanding of the mechanical properties of a material, it is essential to understand the defect structures and associated properties and microhardness indentation is a technique that can aid this understanding. Results: The Vickers hardness on (010), {011} and {110} faces lay in the range of 304-363 MPa. The Knoop Hardnesses on the same faces lay in the range 314-482 MPa. From etching of three indented surfaces, the preferred slip planes have been identified as (001) and (101). For a dislocation glide, the most likely configuration for dislocation movement on the (001) planes is (001) [100] (|b| = 0.65 nm) and for the (101) plane as (101) 101~(|b| = 1.084 nm) although (101) [010] (|b| = 1.105 nm) is possible. Tensile testing showed that at a stress value of 2.3 MPa primary twinning occurred and grew with increasing stress. When the stress was relaxed, the twins decreased in size, but did not disappear. The twinning shear strain was calculated to be 0.353 for the (101) twin plane. Conclusions: HMX is considered to be brittle, compared to other secondary explosives. Comparing HMX with a range of organic solids, the values for hardness numbers are similar to those of other brittle systems. Under the conditions developed beneath a pyramidal indenter, dislocation slip plays a major part in accommodating the local deformation stresses. © 2015 Gallagher et al.; licensee Springer

    Recurrent and Founder Mutations in the Netherlands: the Long-QT Syndrome

    Get PDF
    Background and objective The long-QT syndrome (LQTS) is associated with premature sudden cardiac deaths affecting whole families and is caused by mutations in genes encoding for cardiac proteins. When the same mutation is found in different families (recurrent mutations), this may imply either a common ancestor (founder) or multiple de novo mutations. We aimed to review recurrent mutations in patients with LQTS. Methods By use of our databases, we investigated the number of mutations that were found recurrently (at least three times) in LQT type 1-3 patients in the Netherlands. We studied familial links in the apparently unrelated probands, and we visualised the geographical distribution of these probands. Our results were compared with published literature of founder effects in LQTS outside the Netherlands. Results We counted 14 recurrent LQT mutations in the Netherlands. There are 326 identified carriers of one of these mutations. For three of these mutations, familial links were found between apparently unrelated probands. Conclusion Whereas true LQT founder mutations are described elsewhere in the world, we cannot yet demonstrate a real founder effect of these recurrent mutations in the Netherlands. Further studies on the prevalence of these mutations are indicated, and haplotype-sharing of the mutation carriers is pertinent to provide more evidence for founder mutation-based LQTS pathology in our countr

    Chaos game representation for comparison of whole genomes

    Get PDF
    BACKGROUND: Chaos game representation of genome sequences has been used for visual representation of genome sequence patterns as well as alignment-free comparisons of sequences based on oligonucleotide frequencies. However the potential of this representation for making alignment-based comparisons of whole genome sequences has not been exploited. RESULTS: We present here a fast algorithm for identifying all local alignments between two long DNA sequences using the sequence information contained in CGR points. The local alignments can be depicted graphically in a dot-matrix plot or in text form, and the significant similarities and differences between the two sequences can be identified. We demonstrate the method through comparison of whole genomes of several microbial species. Given two closely related genomes we generate information on mismatches, insertions, deletions and shuffles that differentiate the two genomes. CONCLUSION: Addition of the possibility of large scale sequence alignment to the repertoire of alignment-free sequence analysis applications of chaos game representation, positions CGR as a powerful sequence analysis tool

    Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems

    Get PDF
    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change
    corecore