57 research outputs found

    RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways

    Get PDF
    Musashi1 (MSI1) is an RNA-binding protein that plays critical roles in nervous-system development and stem-cell self-renewal. Here, we examined its role in the progression of glioma. Short hairpin RNA (shRNA)-based MSI1-knock down (KD) in glioblastoma and medulloblastoma cells resulted in a significantly lower number of self renewing colony on day 30 (a 65% reduction), compared with non-silencing shRNA-treated control cells, indicative of an inhibitory effect of MSI1-KD on tumor cell growth and survival. Immunocytochemical staining of the MSI1-KD glioblastoma cells indicated that they ectopically expressed metaphase markers. In addition, a 2.2-fold increase in the number of MSI1-KD cells in the G2/M phase was observed. Thus, MSI1-KD caused the prolongation of mitosis and reduced the cell survival, although the expression of activated Caspase-3 was unaltered. We further showed that MSI1-KD glioblastoma cells xenografted into the brains of NOD/SCID mice formed tumors that were 96.6% smaller, as measured by a bioluminescence imaging system (BLI), than non-KD cells, and the host survival was longer (49.3±6.1 days vs. 33.6±3.6 days; P<0.01). These findings and other cell biological analyses suggested that the reduction of MSI1 in glioma cells prolonged the cell cycle by inducing the accumulation of Cyclin B1. Furthermore, MSI1-KD reduced the activities of the Notch and PI3 kinase-Akt signaling pathways, through the up-regulation of Numb and PTEN, respectively. Exposure of glioma cells to chemical inhibitors of these pathways reduced the number of spheres and living cells, as did MSI1-KD. These results suggest that MSI1 increases the growth and/or survival of certain types of glioma cells by promoting the activation of both Notch and PI3 kinase/Akt signaling

    GOPred: GO Molecular Function Prediction by Combined Classifiers

    Get PDF
    Functional protein annotation is an important matter for in vivo and in silico biology. Several computational methods have been proposed that make use of a wide range of features such as motifs, domains, homology, structure and physicochemical properties. There is no single method that performs best in all functional classification problems because information obtained using any of these features depends on the function to be assigned to the protein. In this study, we portray a novel approach that combines different methods to better represent protein function. First, we formulated the function annotation problem as a classification problem defined on 300 different Gene Ontology (GO) terms from molecular function aspect. We presented a method to form positive and negative training examples while taking into account the directed acyclic graph (DAG) structure and evidence codes of GO. We applied three different methods and their combinations. Results show that combining different methods improves prediction accuracy in most cases. The proposed method, GOPred, is available as an online computational annotation tool (http://kinaz.fen.bilkent.edu.tr/gopred)

    Histone Variants and Their Post-Translational Modifications in Primary Human Fat Cells

    Get PDF
    Epigenetic changes related to human disease cannot be fully addressed by studies of cells from cultures or from other mammals. We isolated human fat cells from subcutaneous abdominal fat tissue of female subjects and extracted histones from either purified nuclei or intact cells. Direct acid extraction of whole adipocytes was more efficient, yielding about 100 µg of protein with histone content of 60% –70% from 10 mL of fat cells. Differential proteolysis of the protein extracts by trypsin or ArgC-protease followed by nanoLC/MS/MS with alternating CID/ETD peptide sequencing identified 19 histone variants. Four variants were found at the protein level for the first time; particularly HIST2H4B was identified besides the only H4 isoform earlier known to be expressed in humans. Three of the found H2A potentially organize small nucleosomes in transcriptionally active chromatin, while two H2AFY variants inactivate X chromosome in female cells. HIST1H2BA and three of the identified H1 variants had earlier been described only as oocyte or testis specific histones. H2AFX and H2AFY revealed differential and variable N-terminal processing. Out of 78 histone modifications by acetylation/trimethylation, methylation, dimethylation, phosphorylation and ubiquitination, identified from six subjects, 68 were found for the first time. Only 23 of these modifications were detected in two or more subjects, while all the others were individual specific. The direct acid extraction of adipocytes allows for personal epigenetic analyses of human fat tissue, for profiling of histone modifications related to obesity, diabetes and metabolic syndrome, as well as for selection of individual medical treatments

    Nucleosomes in gene regulation: theoretical approaches

    Get PDF
    This work reviews current theoretical approaches of biophysics and bioinformatics for the description of nucleosome arrangements in chromatin and transcription factor binding to nucleosomal organized DNA. The role of nucleosomes in gene regulation is discussed from molecular-mechanistic and biological point of view. In addition to classical problems of this field, actual questions of epigenetic regulation are discussed. The authors selected for discussion what seem to be the most interesting concepts and hypotheses. Mathematical approaches are described in a simplified language to attract attention to the most important directions of this field

    Antimicrobial Resistance Patterns in Clostridioides difficile Strains Isolated from Neonates in Germany

    No full text
    Young children are frequently colonized with Clostridioides (C.) difficile. Depending on their resistance patterns, antibiotic treatment can facilitate gastrointestinal spreading in colonized individuals, potentially leading to transmission to others. C. difficile was isolated from stool samples from infants born in two hospitals in G&ouml;ttingen and Darmstadt, Germany. All isolates were subjected to phenotypic antimicrobial resistance testing, PCR-based screening for toxin genes and mass spectrometry-based exclusion of ribotypes 027 and 176. Within an initial cohort of 324 neonates with a longitudinal survey of C. difficile, 137 strains were isolated from 48 individuals. Antimicrobial resistance was recorded against metronidazole in one (0.7%), erythromycin in 16 (11.7%) and moxifloxacin in 2 (1.5%) of the strains, whereas no resistance was observed against vancomycin (0.0%) or rifampicin (0.0%). Newly observed resistance against erythromycin in children with detection of previously completely sensitive isolates was reported for C. difficile isolates from 2 out of 48 children. In 20 children (42%), non-toxigenic strains were detected, and from 27 children (56%), toxigenic strains were isolated, while both toxigenic and non-toxigenic strains were recorded for 1 child (2%). Ribotypes 027 or 176 were not observed. In conclusion, the German C. difficile strains isolated from the children showed mild to moderate resistance with predominance of macrolide resistance, a substance class which is frequently applied in children. The observed switches to the dominance of macrolide-resistant isolates suggests likely selection of resistant C. difficile strains already in children
    • …
    corecore