1,119 research outputs found

    Optical control of coherent interactions between quantum dot electron spins

    Full text link
    Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with microeV-strength.Comment: 5 pages, 4 figure

    Identification of a Protein in Several Borrelia Species which is Related to OspC of the Lyme Disease Spirochetes.

    Get PDF
    Using oligonucleotide probes which have previously been shown to be specific for the ospC gene found in the Lyme disease spirochete species Borrelia burgdorferi, B. garinii, and group VS461, we detected an ospC homolog in other Borrelia species including B. coriaceae, B. hermsii, B. anserina, B. turicatae, and B. parkeri. In contrast to the Lyme disease spirochetes, which carry the ospC gene on a 26-kb circular plasmid, we mapped the gene in other Borrelia species to linear plasmids which varied in size among the isolates tested. Some isolates carry multiple copies of the gene residing on linear plasmids of different sizes. The analyses conducted here also demonstrate that these Borrelia species contain a linear chromosome. Northern (RNA) blot analyses demonstrated that the gene is transcriptionally expressed in all species examined. High levels of transcriptional expression were observed in some B. hermsii isolates. Transcriptional start site analyses revealed that the length of the untranslated leader sequence was identical to that observed in the Lyme disease spirochete species. By Western blotting (immunoblotting) with antiserum (polyclonal) raised against the OspC protein of B. burgdorferi, we detected an immunoreactive protein of the same molecular weight as the OspC found in Lyme disease spirochete species. The results presented here demonstrate the presence of a protein that is genetically and antigenically related to OspC which is expressed in all species of the genus Borrelia tested

    The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer

    Full text link
    The external electric field deforms flaccid phospholipid vesicles into spheroidal bodies, with the rotational axis aligned with its direction. Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the deformation is typically prolate, while increasing the frequency to the 10 kHz range changes the deformation to oblate. We attempt to explain this behaviour with a theoretical model, based on the minimization of the total free energy of the vesicle. The energy terms taken into account include the membrane bending energy and the energy of the electric field. The latter is calculated from the electric field via the Maxwell stress tensor, where the membrane is modelled as anisotropic lossy dielectric. Vesicle deformation in response to varying frequency is calculated numerically. Using a series expansion, we also derive a simplified expression for the deformation, which retains the frequency dependence of the exact expression and may provide a better substitute for the series expansion used by Winterhalter and Helfrich, which was found to be valid only in the limit of low frequencies. The model with the anisotropic membrane permittivity imposes two constraints on the values of material constants: tangential component of dielectric permittivity tensor of the phospholipid membrane must exceed its radial component by approximately a factor of 3; and the membrane conductivity has to be relatively high, approximately one tenth of the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens. Matte

    Efficient Photon Upconversion Enabled by Strong Coupling Between Organic Molecules and Quantum Dots

    Full text link
    Hybrid structures formed between organic molecules and inorganic quantum dots can accomplish unique photophysical transformations by taking advantage of their disparate properties. The electronic coupling between these materials is typically weak, leading photoexcited charge carriers to spatially localize to a dot or a molecule at its surface. However, we show that by converting a chemical linker that covalently binds anthracene molecules to silicon quantum dots from a carbon-carbon single bond to a double bond, we access a strong-coupling regime where excited carriers spatially delocalize across both anthracene and silicon. By pushing the system to delocalize, we design a photon upconversion system with a higher efficiency (17.2%) and lower threshold intensity (0.5 W/cm^2) than that of a corresponding weakly-coupled system. Our results show that strong coupling between molecules and nanostructures achieved through targeted linking chemistry provides a new route for tailoring properties in materials for light-driven applications.Comment: 33 pages (20 in main text, 13 in supporting information), 12 figures (5 in main text, 7 in supporting information

    Brown dwarfs in the Hyades and beyond?

    Full text link
    We have used both the Low-Resolution Imaging Spectrograph and the HIRES echelle spectrograph on the Keck telescopes to obtain spectra of twelve candidate members of the Hyades cluster identified by Leggett and Hawkins (1988, 1989). All of the objects are chromospherically-active, late-type M-dwarfs, with Hα\alpha equivalent widths varying from 1 to 30\AA. Based on our measured radial velocities, the level of stellar activity and other spectroscopic features, only one of the twelve stars has properties consistent with cluster membership. We consider how this result affects estimates of the luminosity and mass function of the Hyades cluster. Five of the eleven field stars have weak K I 7665/7699\AA and CaH absorption as compared with M-dwarf standards of the same spectral type, suggesting a lower surface gravity. Two of these sources, LH0416+14 and LH0419+15, exhibit significant lithium 6708 \AA absorption. Based partly on parallax measurements by the US Naval Observatory (Harris et al, 1998), we identify all five as likely to be young, pre-main sequence objects in or near the Taurus-Auriga association at distances of between 150 and 250 parsecs. A comparison with theoretical models of pre-main sequence stars indicates masses of less than 0.05 M_\odot.Comment: to appear in AJ, January 1999; 34 pages, (Latex format), including 10 embedded postscript figures and two table

    The Helium content and age of the Hyades: Constraints from five binary systems and Hipparcos parallaxes

    Get PDF
    We compare the accurate empirical mass-luminosity (M-L) relation based on five Hyades binary systems to predictions of stellar models calculated with various input parameters (helium, metallicity, age) or physics (mixing-length ratio, model atmosphere, equation of state, microscopic diffusion). Models based on a helium content Ysim0.28 inferred from the dydz enrichment law are more than 3sigma beyond the observations, suggesting that the initial helium abundance is lower than expected from its supersolar metallicity. With the photometric metallicity (FeH=0.144pm0.013 dex, Grenon (2000) we derive Y=0.255\pm0.009. Because of the (Y,FeH) degeneracy in the M-L plane, the uncertainty grows to Delta Y=0.013 if the metallicity from spectroscopy is adopted (FeH=0.14pm0.05 dex, Cayrel de Strobel et al 1997). We use these results to discuss the Hertzsprung-Russell (HR) diagram of the Hyades, in the (Mv,B-V) plane, based on the very precise Hipparcos dynamical parallaxes. Present models fit the tight observed sequence very well except at low temperatures. In the low mass region of the HR diagram sensitive to the mixing-length parameter (aMLT), the slope of the main sequence (MS) suggests that aMLT could decrease from a solar (or even supersolar) value at higher mass to subsolar values at low mass, which is also supported by the modeling of the vB22 M-L relation. We find that the discrepancy at low temperatures (B-V\gtrsim 1.2) remains, even if an improved equation of state or better model atmospheres are used. Finally, we discuss the positions of the stars at turn-off in the light of their observed rotation rates and we deduce that the maximum age of the Hyades predicted by the present models is sim650 Myr.Comment: 14 pages, 13 figures, accepted for publication in A&

    On the determination of oxygen abundances in chromospherically active stars

    Full text link
    We discuss oxygen abundances derived from [O I] 6300 and the O I triplet in stars spanning a wide range in chromospheric activity level, and show that these two indicators yield increasingly discrepant results with higher chromospheric/coronal activity measures. While the forbidden and permitted lines give fairly consistent results for solar-type disk dwarfs, spuriously high O I triplet abundances are observed in young Hyades and Pleiades stars, as well as in individual components of RS CVn binaries (up to 1.8 dex). The distinct behaviour of the [O I]-based abundances which consistently remain near-solar suggests that this phenomenon mostly results from large departures from LTE affecting the O I triplet at high activity level that are currently unaccounted for, but also possibly from a failure to adequately model the atmospheres of K-type stars. These results suggest that some caution should be exercised when interpreting oxygen abundances in active binaries or young open cluster stars.Comment: 8 pages, accepted for publication in A&

    Dimethyl 2-[23-oxo-22,24-diphenyl-8,11,14-trioxa-25-aza­tetra­cyclo­[19.3.1.02,7.015,20]penta­cosa-2,4,6,15(20),16,18-hexaen-25-yl]but-2-enedioate

    Get PDF
    The title compound, C39H37NO8, is a product of the Michael addition of the cyclic secondary amine subunit of aza-14-crown-4 ether to dimethyl acetyl­enedicarboxyl­ate. The piperidinone ring exhibits a distorted chair conformation and the dimethyl acetyl­enedicarboxyl­ate fragment has a cis configuration with a dihedral angle of 56.61 (5)° between the two carboxyl­ate groups. The crystal packing is stabilized by the weak C—H⋯O hydrogen bonds
    corecore