344 research outputs found

    Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    Full text link
    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10 cm x 10 cm) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, as well as breakup geometries, as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the TSR storage ring facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A huge isotope effect is observed when comparing the relative branching ratio between the D2+H and the HD+D channel; the ratio 2B(D2+H)/B(HD+D), which is measured to be 1.27 +/- 0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7 +/- 0.5 at ~5 eV.Comment: 11 pages, 12 figures, submitted to Physical Review

    Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    Get PDF
    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from E≈13E\approx13 to 150 keV. For atoms we obtained absolute energy resolutions down to ΔE≈120\Delta E \approx 120 eV and relative energy resolutions down to ΔE/E≈10−3\Delta E/E\approx10^{-3}. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements

    Dissociative recombination measurements of HCl+ using an ion storage ring

    Get PDF
    We have measured dissociative recombination of HCl+ with electrons using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T=10 to 5000 K. We show that the previously used HCl+ DR data underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and overestimate it by a factor of 3.0 at T=300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.Comment: Accepted for publication in ApJ (July 7, 2013

    The Grizzly, February 15, 1980

    Get PDF
    J-Board Hears USGA Controversy • Victory Over Swarthmore: Men\u27s Basketball Captures Title • Reber Spends Semester In England • USGA Notes • Letters to the Editor • Basketball Downs K-town • MAC Championships • Lacrosse Looking Good • Spider Wrestler Line-up • The FUNdamentals of Freestyle Skiinghttps://digitalcommons.ursinus.edu/grizzlynews/1033/thumbnail.jp

    Anisotropic fragmentation in low-energy dissociative recombination

    Full text link
    On a dense energy grid reaching up to 75 meV electron collision energy the fragmentation angle and the kinetic energy release of neutral dissociative recombination fragments have been studied in a twin merged beam experiment. The anisotropy described by Legendre polynomials and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged rate coefficient. For the first time angular dependences higher than 2nd^{nd} order could be deduced. Moreover, a slight anisotropy at zero collision energy was observed which is caused by the flattened velocity distribution of the electron beam.Comment: 8 pages, 4 figures; The Article will be published in the proceedings of DR 2007, a symposium on Dissociative Recombination held in Ameland, The Netherlands (18.-23. July 2008); Reference 19 has been published meanwhile in S. Novotny, PRL 100, 193201 (2008

    "Safe" Coulomb Excitation of 30Mg

    Full text link
    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin nat-Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation gamma ray yields the B(E2; 0+ -> 2+) value of 30Mg was determined to be 241(31) e2fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg lies still outside the ``island of inversion''

    Radiative rotational lifetimes and state-resolved relative detachment cross sections from photodetachment thermometry of molecular anions in a cryogenic storage ring

    Full text link
    Photodetachment thermometry on a beam of OH−^- in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional, frequency and time dependent photodetachment spectroscopy over 20 minutes of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J = 1 natural lifetime (about 193 s) and determine the OH−^- rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.Comment: Manuscript LaTeX with 5 pages, 3 figures, and 1 table plus LaTeX supplement with 12 pages, 3 figures and 3 tables. This article has been accepted by Physical Review Letter

    First Results on In-Beam gamma Spectroscopy of Neutron-Rich Na and Mg Isotopes at REX-ISOLDE

    Full text link
    After the successful commissioning of the radioactive beam experiment at ISOLDE (REX-ISOLDE) - an accelerator for exotic nuclei produced by ISOLDE - first physics experiments using these beams were performed. Initial experiments focused on the region of deformation in the vicinity of the neutron-rich Na and Mg isotopes. Preliminary results show the high potential and physics opportunities offered by the exotic isotope accelerator REX in conjunction with the modern Germanium gamma spectrometer MINIBALL.Comment: 7 pages, RNB6 conference contributio

    Coulomb excitation of 68^{68}Ni at safe energies

    Get PDF
    The B(E2;0+→2+)B(E2;0^+\to2^+) value in 68^{68}Ni has been measured using Coulomb excitation at safe energies. The 68^{68}Ni radioactive beam was post-accelerated at the ISOLDE facility (CERN) to 2.9 MeV/u. The emitted γ\gamma rays were detected by the MINIBALL detector array. A kinematic particle reconstruction was performed in order to increase the measured c.m. angular range of the excitation cross section. The obtained value of 2.8−1.0+1.2^{+1.2}_{-1.0} 102^2 e2^2fm4^4 is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low 0+→2+0^+\to2^+ transition probability.Comment: 4 pages, 5 figure
    • …
    corecore