280 research outputs found

    Temperature and thermodynamic instabilities in heavy ion collisions

    Get PDF
    We investigate thermodynamic properties and instability conditions in intermediate energy heavy ion reactions. We define locally thermodynamic variables, i.e. density, pressure and temperature, directly from the phase space distribution of a relativistic transport calculation. In particular, temperatures are determined by a fit to two covariant hot Fermi distributions thus taking into account possible anisotropic momentum configurations. We define instability independent from the nuclear matter spinodal by the criterion that the effective compressibility becomes negative. The method is applied to a semi-central Au on Au reaction at 600 MeV/nucleon. We investigate in particular the center of the participant and the spectator matter. In the latter we find a clear indication of instability with conditions of density and temperature that are consistent with experimental determinations.Comment: 20 pages latex, 5 PS-figures, revised version (minor changes) accepted for publication in Nucl. Phys.

    CDK12 globally stimulates RNA polymerase II transcription elongation and carboxyl-terminal domain phosphorylation

    Get PDF
    Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD

    Magnetic resonance-guided focused ultrasound treatment for essential tremor shows sustained efficacy: a meta-analysis

    Get PDF
    Although magnetic resonance-guided focused ultrasound (MRgFUS) is a viable treatment option for essential tremor, some studies note a diminished treatment benefit over time. A PubMed search was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were included if hand tremor scores (HTS), total Clinical Rating Scale for Tremor (CRST) scores, or Quality of Life in Essential Tremor Questionnaire (QUEST) scores at regular intervals following MRgFUS treatment for essential tremor were documented. Data analyses included a random effects model of meta-analysis and mixed-effects model of meta-regression. Twenty-one articles reporting HTS for 395 patients were included. Mean pre-operative HTS was 19.2 ± 5.0. Mean HTS at 3 months post-treatment was 7.4 ± 5.0 (61.5% improvement, p \u3c 0.001). Treatment effect was mildly decreased at 36 months at 9.1 ± 5.4 (8.8% reduction). Meta-regression of time since treatment as a modifier of HTS revealed a downward trend in effect size, though this was not statistically significant (p = 0.208). Only 4 studies included follow-up ≥ 24 months. Thirteen included articles reported total CRST scores with standardized follow-up for 250 patients. Mean pre-operative total CRST score decreased by 46.2% at 3 months post-treatment (p \u3c 0.001). Additionally, mean QUEST scores at 3 months post-treatment significantly improved compared to baseline (p \u3c 0.001). HTS is significantly improved from baseline ≥ 24 months post-treatment and possibly ≥ 48 months post-treatment. There is a current paucity of long-term CRST and QUEST score reporting in the literature

    Pion-Production in Heavy-Ion Collisions at SIS energies

    Full text link
    We investigate the production of pions in heavy-ion collisions in the energy range of 11 - 22 GeV/A. The dynamics of the nucleus-nucleus collisions is described by a set of coupled transport equations of the Boltzmann-Uehling-Uhlenbeck type for baryons and mesons. Besides the N(938)N(938) and the Δ(1232)\Delta(1232) we also take into account nucleon resonances up to masses of 1.9GeV/c21.9 GeV/c^2 as well as π\pi-, η\eta- and ρ\rho-mesons. We study in detail the influence of the higher baryonic resonances and the 2π2\pi-production channels (NNNNππNN\to NN \pi\pi) on the pion spectra in comparison to π\pi^- data from Ar+KClAr + KCl collisions at 1.81.8 GeV/A and π0\pi^0-data for Au+AuAu+Au at 1.0 GeV/A. We, furthermore, present a detailed comparison of differential pion angular distributions with the BEVALAC data for Ar + KCl at 1.8 GeV/A. The general agreement obtained indicates that the overall reactions dynamics is well described by our novel transport approach.Comment: 31 pages, 18 figures (inlcuded), to appear in Z. Phys.

    Light-Front Analysis of pi^{-} Mesons Produced in Mg - Mg Collisions at 4.3 a Gev/c

    Get PDF
    Light-front analysis of pi^{-} mesons in Mg-Mg collisions is carried out. The phase space of secondary pions is naturally divided into two parts in one of which the thermal equilibration assumption seems to be in a good agreement with data. Corresponding temperatures are extracted and compared to the results of other experiments. The experimental results have been compared with the predictions of the Quark Gluon String Model (QGSM) and satisfactory agreement between the experimental data and the model has been found.Comment: 14 pages with 7 postscript figures. accepted for publication in Nucl. Phys.

    Influence of the in-medium pion dispersion relation in heavy ion collisions

    Full text link
    We investigate the influence of medium corrections to the pion dispersion relation on the pion dynamics in intermediate energy heavy ion collisions. To do so a pion potential is extracted from the in-medium dispersion relation and used in QMD calculations and thus we take care of both, real and imaginary part of the pion optical potential. The potentials are determined from different sources, i.e. from the Δ\Delta--hole model and from phenomenological approaches. Depending on the strength of the potential a reduction of the anti-correlation of pion and nucleon flow in non-central collisions is observed as well as an enhancement of the high energetic yield in transverse pion spectra. A comparison to experiments, in particular to ptp_t-spectra for the reaction Ca+Ca at 1 GeV/nucleon and the pion in-plane flow in Ne+Pb collisions at 800 MeV/nucleon, generally favours a weak potential.Comment: 25 pages, using REVTeX, 6 postscript figures; replaced by published versio

    Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV

    Full text link
    Chemical and thermal freeze-out of the hadronic fireball formed in symmetric collisions of light, intermediate-mass, and heavy nuclei at beam energies between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated, isospin-symmetric ideal hadron gas with grand-canonical baryon-number conservation. For each collision system the baryochemical potential mu_B and the chemical freeze-out temperature T_c are deduced from the inclusive neutral pion and eta yields which are augmented by interpolated data on deuteron production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV, while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with system size, whereas T_c remains constant. The centrality dependence of the freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV. For the highest beam energies the fraction of nucleons excited to resonance states reaches freeze-out values of nearly 15 %, suggesting resonance densities close to normal nuclear density at maximum compression. In contrast to the particle yields, which convey the status at chemical freeze-out, the shapes of the related transverse-mass spectra do reflect thermal freeze-out. The observed thermal freeze-out temperatures T_th are equal to or slightly lower than T_c, indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure

    Radiation Damping in FRW Space-times with Different Topologies

    Get PDF
    We study the role played by the compactness and the degree of connectedness in the time evolution of the energy of a radiating system in the Friedmann-Robertson-Walker (FRW) space-times whose t=constt=const spacelike sections are the Euclidean 3-manifold R3{\cal R}^3 and six topologically non-equivalent flat orientable compact multiply connected Riemannian 3-manifolds. An exponential damping of the energy E(t)E(t) is present in the R3{\cal R}^3 case, whereas for the six compact flat 3-spaces it is found basically the same pattern for the evolution of the energy, namely relative minima and maxima occurring at different times (depending on the degree of connectedness) followed by a growth of E(t)E(t). Likely reasons for this divergent behavior of E(t)E(t) in these compact flat 3-manifolds are discussed and further developments are indicated. A misinterpretation of Wolf's results regarding one of the six orientable compact flat 3-manifolds is also indicated and rectified.Comment: 13 pages, RevTeX, 5 figures, To appear in Phys. Rev. D 15, vol. 57 (1998

    Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    Get PDF
    MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
    corecore