9,391 research outputs found
Vacuum mixing technology to improve the mechanical properties of ultra-high performance concrete
Ultra-high performance concrete is an important evolution in concrete technology, enabled by the combination of a good particle packing density, a suitable mixing procedure and compatible binders and admixtures. In the last decades a lot of research has been performed to explore the boundaries of this new type of concrete. Mixers equipped with a vacuum pump able to lower the mixing pressure from 1,013 to 50 mbar are an interesting way to improve the performance by lowering the air content. Profound research is necessary, because little is known about this technique of air content reduction. The influence of a reduced air content on the mechanical properties of ultra-high performance concrete is tested at The Magnel Laboratory for Concrete Research. This paper reports the results of the compressive strength, the splitting and bending tensile strength and the modulus of elasticity. All the mechanical properties after 28 days curing are improved by reducing the air content in the ultra-high performance concrete. An increase in compressive strength between 7 and 22 % is measured. The bending tensile strength increases maximum with 17 % and the splitting tensile strength gains 3-22 % in performance. Furthermore, the modulus of elasticity improves with 3-8 %. In conclusion, the air content can be controlled and a higher performance can be achieved by vacuum mixing technology. Finally, it is shown that the vacuum technology is not as effective in a 75 l capacity vacuum mixer as it is for a smaller vacuum mixer with a capacity of 5 l
Influences of chloride immersion on zeta potential and chloride in concentration of cement-based materials
In this paper, the zeta potential of freshly mixed cement paste and hardened cement pastes, as well as the concentration index, was measured. The influences of chloride concentration in mixing water and slag content on zeta potential of freshly mixed pastes were studied. A proposed model was expressed to explain the relationship of zeta potential and concentration index of hardened cement pastes immersed in chloride solution. The results showed that the increase of chloride concentration in mixing water and slag replacement improved the zeta potential of freshly mixed cement, the hydration rate and concentration of ions in mixed water affects the zeta potential. With the increase of chloride concentration in soaking solution, the chloride concentration index and zeta potential of hardened cement paste all gradually decreased. The addition of slag gave some changes on chloride in concentration and zeta potential. The relationship among chloride concentration index, chloride concentration in soaking solution and slag replacement revealed by Gouy-Chapman model was in good agreement with the measured results
Analysis of optimal control problem formulations in skeletal movement predictions
Postprint (published version
- …
