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Abstract 

In this paper, the zeta potential of freshly mixed cement paste and hardened cement pastes, as well as the concentration 

index, was measured. The influences of chloride concentration in mixing water and slag content on zeta potential of 

freshly mixed pastes were studied. A proposed model was expressed to explain the relationship of zeta potential and 

concentration index of hardened cement pastes immersed in chloride solution. The results showed that the increase of 

chloride concentration in mixing water and slag replacement improved the zeta potential of freshly mixed cement, the 

hydration rate and concentration of ions in mixed water affects the zeta potential. With the increase of chloride 

concentration in soaking solution, the chloride concentration index and zeta potential of hardened cement paste all 

gradually decreased. The addition of slag gave some changes on chloride in concentration and zeta potential. The 

relationship among chloride concentration index, chloride concentration in soaking solution and slag replacement 

revealed by Gouy-Chapman model was in good agreement with the measured results. 
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1. Introduction 

Corrosion of steel in concrete is one of the major causes for deterioration of reinforcement steel 

concrete, especially in the presence of chloride ions and carbon dioxide(Maekawa K., 2003). For 

concrete structure exposed to extreme condition, such as marine exposition or highway structure 

where de-icing salt is used, the damage caused by chloride ingress do great harm to the durability of 

reinforcement concrete structure and give rise to much high repairing and reconstruction cost(Mangat 

PS.,1992, Neville A., 1995, Federal Highway Administration, 2002, Johnson JT., 2007). The high 

alkaline condition in cement-based materials forms a passivation membrane at the rebar surface to 

protect it from being corroded. However, the corrosion initiated when the threshold chloride content is 

reached at the surface of steel and the passivation film breaks.  

In concrete, chlorides can be existed in three forms: physical adsorption chloride, chemical binding 

chloride and free chloride(Berman H A., 1972). The physically adsorbed chlorides and chemically 

bound chlorides are collectively called binding chlorides However, according to the former studies on 

chloride-related issues, it was reported that it is free chloride in pore solution that affected and resulted 

in steel corrosion(Kayyali O A., 1995). However, when it concerns to the study of chloride-induced 

corrosion, binding chloride will bring significant influences. Chloride binding decreases the content of 

free chloride in pore solution and reduces the chloride flux into concrete. Meanwhile, the formation of 

Freidel’s salt due to the chemical binding of chloride decreases the porosity and improves the 

impermeability of pastes/mortars/concrete(Glass G K., 2000, Reddy B., 2002). 

Chlorides may derive from aggregates/mixing water (internal chloride), or penetrate into concrete 

during exposure to chloride-bearing environments (intruded chloride)(Wang S D., 2000). Chloride 

ions added or penetrated into concrete will react with some of the cement constituent or hydration 

products. Due to the differences in hydration degree when chlorides appeared, internal and intruded 

chloride shows different influences on properties and performance of cement-based materials.  

The internal chlorides may participate in the hydration process of cementitous materials and affects 

hydration rate and the morphology and properties of hydration products. A. Traetteberg et 

al(Traetteberg A., 1974) found that calcium chloride accelerated the hydration of C3S and chloride 

appears to promote the formation of a higher Ca/Si hydrated product, especially at a lower w/s ratio. It 

was also reported in their paper that the presence of CaCl influenced the morphological features, 

especially in the early stages of hydration. Both C3A and C4FA in cementitous materials form 

Freidel’s salt (C3A·CaCl2·10H2O) or its analogues with Cl-(Diamond S., 1986), which may decrease 

the porosity of concrete. Meanwhile, the binding of chloride ions by cement particles and hydration 

products changes the charge density and distribution at the surface of hydration products, affects the 

formation of electric double layer at the solid-liquid interface(Yuan Q., 2009a).  

After a period of hydration, the intruded chloride gives rise to some changes in structure and 

morphological features through the physical chemistry reaction to hydration products. Different from 

the internal chloride, the chemical binding of intrude chloride ion is mainly occurred between chloride 

and aluminate. The Kuzel’s salts form firstly and transform to Friedel’s salts with the increase of 

chloride concentration in pore solution(Balonis M., 2010). In cement-based materials, chloride ions 

can also be physically absorbed by solid, and the electric double layer(EDL) formed at the interface of 

solid and liquid was regarded as the reason cause the physical adsorption. 

In 1993, Japanese researchers Nagataki et al(Nagataki S., 1993) immersed the cement paste discs in 

the sodium chloride solution whose concentration equals to seawater and measured the free chloride 

content of samples by pore solution expression. They found that after 91d of immersion, the 

concentration of free chloride in pore solution almost upped to twice of that in soaking solution. They 

called this phenomenon as chloride condensation, the ratio of chloride concentration in expressed pore 

solution to that in soaking solution was defined as concentration index. Li et al(Li Q L., 2013) 

investigated the influences of concentration of soaking solution, soaking time, curing age, soaking 

temperature and pore solution expression pressure on free chloride content of cement-based materials. 

The concentration index decreased with the concentration of soaking solution, and it increased with 

soaking time before the 63d of immersion, then decreased. The chloride ion concentration in pore 

solution decreased as the curing time increased. Soaking temperature and pressure did not affect free 



 

chloride ion concentration. The definition of chloride condensation has been proposed for about 20 

years and a lot of studies have used and studied chloride condensation. Although in this paper the 

definition of chloride condensation is also used, it has to emphasize that what we talk about here is 

deviated from the meaning of condensation in chemistry. The phenomenon of chloride condensation 

may be much more close to a kind of unstable physical adsorption. Therefore, author of this paper 

redefined this phenomenon as chloride in concentration, replaced the concentration index as 

condensation index applied before 

Nagataki et al(Nagataki S., 1993) tried to interpret the chloride in concentration in pore solution of 

cement-based materials by using the theory of electric double layer firstly. After that, Yuan(Yuan Q., 

2009b) calculated the length of electric double layer based on Debye equation, and gained the 

conclusion that the higher concentration of soaking solution, the thinner thickness of electric double 

layer and the smaller concentration index. Based on the results of Yuan, He(He F Q., 2010) assumed 

the average concentration of chloride ion in diffusion layer and proposed a computational formula to 

calculate chloride concentration index caused by electric double layer formed within pore structure of 

cement-based materials. 

The electrical double layer forms at the interface between pore walls and pore solution. The electric 

double layer consists of two layers: compact layer and diffusion layer. In compact layer, ions are 

tightly adsorbed on the solid surface, while ions diffusely distribute in diffusion layer due to the 

interactions between attraction of solid phase and thermal motion. Most of the ions in diffusion layer 

may move with pore solution, electrokinetic potential formed at shear plane is defined as zeta potential. 

Zeta potential of clinker and cement have provided a lot of useful information on early hydration of 

C3S and other calcium silicate compounds and rheological property of freshly mixed 

pastes(Traetteberg A., 1974). However, the studies on zeta potential were mainly concentrated on 

mechanism of water reducing agent on cement hydration(Plank J., 2007a). The research on influences 

of chloride ion on cement hydration and ion binding is limited. Besides, limited by testing technology, 

most of the existed studies on zeta potential need to dilute the sample during the measurement, which 

restricted the researches.  

This paper studies the influences of chloride ions on early hydration by measuring the zeta potential of 

original suspensaion, and effects on concentration index based on zeta potential of an simplified 

artificial cement pastes. A model was established to investigate the relationship between zeta potential 

and chloride concentration index. 

2.Theory on electroacoustic measurement of zeta potential 

Particles with diameter between 10-6 and 10-9 meters suspended in a continuous phase of 

another component, neither precipitation nor dissolution, is called as colloidal suspension. 

Zeta potential at the surface of colloid particle reveals the surface potential storage and had 

close relationship with the stability of colloid system. According to the theory of 

DLVO(Derjaguin LandanVerwey Overbeek), zeta potential is an important factor representing 

the stability of colloidal suspension system. 

When placed in a sound field, the stability of electric double layer may be broken down. The 

surplus ions are removed and a new polarized state reoccurs, which results to the 

rearrangement of electric charge at the surface of particles. The polarization effects induce 

dipole moment and produce a colloid vibration current within the suspension system. 

 The colloid vibration current(CVI, ICV) is a kind of current at macrolevel for suspension 

system. For thin electric double layer of monodisperse suspension and low conductivity, the 

macroscopic current and field intensity can be calculated based on Shilov Zharkikh cell model: 

brrII  cos/         )cos（/ brbE                                   (1) 
Where, r is polar coordinate, θ is polar angel, b is the cell diameter in cell model, ϕ is 

potential (V), <E> and <I> is macroscopic field intensity (N/C) and current (A). 

Based on equation (1), ICV can be calculated as               brmCV rKI  /cos/-                                               (2) 



 

Where, Km is conductivity of medium (S/m). Introducing the Kuwabara cell model and 

considering the overlap of electric double layer: 
p)1(  FGQICV                                                     (3) 

    ,/)1(1/23/)(2/j9G spSHshs  

pFQ sspm  ),2/()1(),3/()(2 0   

Where ζ is zeta potential (V), ▽p is pressure gradient (Pa/m), j is imaginary unit, s=a[ω 

/(2υ)] 1/2 , a is fineness of dispersion phase (m), ω is ultrasonic frequency (rad/s), υ is 

kinematic viscosity (m2/s), h, H, S is special function proposed in Kuwabara cell model，ρp , 

ρs is density of dispersion phase and colloid respectively (kg/m3), φ is volume concentration, 

Ɛ0 and Ɛm is vacuum dielectric constant and relative dielectric constant of dispersion medium 

(F/s), η is viscosity (Pa•s). 

Comparing to other methods, such as electrophoretic and electroosmosis technique, 

electroacoustic technique shows superior in zeta potential measurement of aqueous colloids. 

Acoustic wave is appropriate for system with complicate and high concentrate. 

Electroacoustic method has the advantages in measuring the zeta potential of samples with 

higher concentrate, larger particle size range and fewer samples consumption and has been 

used to investigate the electrochemical properties at the interface within various materials. In 

this paper, a DT-300 instrument from Dispersion Technology was used for zeta potential 

measurement without dilution of samples, which to some extent avoided the differences in 

hydration and surface properties between diluted and original samples. 

3. Experimental 

3.1. Raw Materials 

P·I 52.5 Portland cement (PC) and Grade 95 slag powder were used in this study. The chemical 

compositions of the cement and slag are given in table 1. NaCl, Ca(OH)2 and AgNO3 were analytical 

grade chemicals. De-ioned water was used to prepare solution for chemical analysis. 
Tab. 1 Chemical composition of raw materials /% 

Raw Material SiO2 Al2O3 Fe2O3 CaO MgO K2O SO3 C  LOSS 

Cement 21.09 4.34 2.81 62．50 1.81 0.62 2.87 — — 

Slag 33.00 13.91 0.82 39.11 10.04 1.91 0.16 — 0.08 

3.2 Specimen preparation and curing 

Water to binder ratio of cement pastes is 0.4. PVC pipe with a size of Φ50×200mm was used as a 

mould. One end of the mold was sealed with polyvinyl chloride board. After cement paste was cast 

into the mold, the other end of the mold was sealed with plastic film immediately, then placed in an 

oscillator for 6h of slow rotation to avoid segregation. After that, the specimens with mould were left 

in a room at 20℃ for 24h, then demolded and cut into thin-disc about 5mm of thickness. 

The cement paste disc specimens were cured in water for another 27 days before vacuum saturation 

with saturated limewater, then immersed into 0.1, 0.3, 0.5, 0.7 and 1.0 mol/L of NaCl solutions 

respectively in plastic containers covered with plastic film at 20℃. The volume ratio of soaking 

solution to specimens was kept above 40. The solution was replaced every two weeks so to ensure the 

relatively constant chloride ion concentration in the soaking solution.  

3.3 Zeta potential measurement of freshly mixed cement pastes 

Mixing 20g Portland cement with different concentration of sodium chloride solution, that is 0，0.1，

0.3，0.5，0.7 and 1.0mol/L respectively in a beaker. The water to binder ratio is 0.4. Placed the 

beaker on a magnetic stirring apparatus with a magnetic stirring son, the beaker was sealed with 

plastic film in case of evaporation. After 20 minutes’ stirring and 1 minute of standing, zeta potential 

of freshly mixed cement pastes was measured.   

3.4 Zeta potential measurement of hardened cement pastes 



 

When the designed soaking time was reached, the samples were grounded by ball mill and placed in 

60℃ vacuum drying oven for 24h. The fraction of particles having diameter between 0.0025 to 0.0045 

mm was separated by sieving and used for zeta potential measurement. The suspension was prepared 

by mixing 2g of powder samples with sodium chloride solution whose concentration equals to that of 

soaking solution the samples immersed. The mass ratio of solid to liquid was 1:1. The suspensions 

were kept for 6 h, and then dispersed by ultrasonic waves for one minute before the measurement. 

Zeta potential in the suspensions was measured with DT300 instrument. 

3.5 Pore solution expression and chloride analysis 

The specimens with three cement paste dics for every group were rubbed with cloth soaked in the 

chloride solution and twisted to obtain saturated surface dry condition after 56 and 91 days of soaking 

in NaCl solutions. Those specimens were crushed, placed in an expression apparatus and loaded to 

510MPa at a rate of 1.5~2.5MPa/s. They were held at this pressure for 1 min, then unloaded rapidly 

and repeated once more. The expressed pore solution was collected with an injection syringe whose 

pinhead was covered with a latex tubing to prevent leaking, then was injected into a plastic container 

and sealed immediately to avoid carbonation. The pore solution expression apparatus was cleaned 

with anhydrous ethanol after a pore solution expression procedure to avoid cross contamination. For 

every batch the reported results are average of three concentration of expressed pore solution. 

3.6 Chloride ion concentration index 

Collected pore solution was diluted for 20 times for chloride ion titration using an automatic 

potentiometric titrator with a silver electrode. The titration solution was 0.01mol/L of AgCl solution. 

At the end point of the titration, automatic potentiometric titrator calculated the chloride 

concentrations automatically according to potential-volume curve. Chloride ion concentration index Nc 

was calculated by the following equation: 
Nc=ck/cb                                                                                   (4) 

Where ck is the chloride ion concentration determined by chloride ion titration, cb is chloride ion 

concentration in exposure solution. 

4. Results and Discussion 

4.1 Influences of chloride concentration in mixing water on zeta potential of freshly mixed pastes   

The development of zeta potential of freshly mixed cement pastes with chloride concentration in 

mixing water and slag replacement is plotted in figure 1. It can be seen that with the increase of 

chloride concentration in mixing water, zeta potential of 4 groups with different slag replacement all 

gradually increased. Meanwhile, the addition of slag had positive effects on higher zeta potential of 

paste samples. 
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Figure 1 Zeta potential of freshly mixed cement pastes 

The phenomenon of electrization is ubiquitous at the interface of solid and liquid. The contact of an 

overwhelming majority of dispersion particles with polar solution or polar media will create an 

electrical charge. The charged dispersion system will attract ions with opposite charges so that the 

system as a whole is electrically neutral, which results in the formation of electric double layer. 

Immersed in solution, the electric double layer formed at the interface of solid and liquid due to the 

ionization, ion exchange or binding and fraction contact. In electric double layer model established by 



 

Stern, the electric double layer consists of two layers: internal layer and external layer. Internal layer 

refers to compact layer while external layer refers to the diffusion layer. In compact layer, ions 

opposite to solid surface potential are strongly bound due to electrical or non-electrical attraction. Out 

of the compact layer, ions diffusely distribute in diffusion layer, where the concentration of counter-

ion is higher than that of ions who take same charge as compact layer. With the increase of distance to 

solid surface, the concentration of counter-ion decreases to that of bulk solution. In diffusion layer, 

there exists a shear plane, solution on the side of pore solution is flowable and moves with bulk 

solution. This movement generates a potential difference at the shear plane, which was defined as zeta 

potential. 

The main hydration product of cement-based materials is calcium silicate hydrates (C–S–H) with a 

high specific surface area. In fully hydration Portland cement paste, C-S-H may reach up to 70% of 

total volume and 200 m2/g(Elakneswaran Y., 2009a). The surface of C–S–H is negative charged due to 

ionization of silanol sites in alkaline condition. The dissociation equilibrium of silanol sites due to pH 

increase is given by(Elakneswaran Y., 2009b).:  

≡SiOH+OH-⇔≡SiO− + H2O                                                      (5) 

The specimens were vacuum saturated with saturated limewater solution before soaking in chloride 

environment, saturated limewater solution might fill the pore of specimens. The hydration of cement 

may also produce calcium hydroxide. The adsorption of Ca2+ on the silanol sites resulted in a positive 

charge: 

≡SiOH + Ca2+ ⇔≡ SiOCa+ + H+                                                 (6) 

The specimens were then immersed in a NaCl solution, chloride ion penetrated into pore solution, and 

absorbed onto the silanol sites: 

≡ SiOH + Ca2+ + Cl− ⇔≡ SiOCaCl + H+                                        (7) 

Therefore, due to the adsorption of hydration product C-S-H gel, electric double layer formed on the 

surface of cement pastes particles. The study(Elakneswaran Y., 2009a) also found that other hydration 

products, such as portlandite and Friedel’s salt, can also adsorb chloride ions. The surface properties of 

solid and ion concentration in pore solution affect zeta potential of electric double layer, and zeta 

potential of freshly mixed paste can also represent the hydration characteristics of cement pastes. 

Many researches have studied the reaction of chloride ions with component of cement during 

hydration and how that affected the hydration rate of cement. During the study on mechanism of 

coagulant and set retarding admixtures, Joisel(Joisel L., 1993) found that the dissolution of ion into 

pore solution has close relationship with hydration rate of cement. Monovalent anion or group in 

solution (such as Cl- or NO3-) can promote the dissolve of Ca2+ and accelerate the hydration of cement, 

which have positive effects on the development of early strength(Mehta P K., 2006). The paper of A. 

Traetteberg(Traetteberg A., 1974) also revealed the acceleration effects of chloride ion on hydration of 

tricalcium silicate. Especially when part of cement is replaced by slag, the addition of chloride salt 

increases the pH of pore solution, the acceleration effects may be more significant. The development 

of hydration will promote the production of hydration products and boost the zeta potential of freshly 

cement pastes. 

Koleva et al(Koleva D A., 2007) studied the influences of chloride ion on hydration products of 

cement-based materials and found that internal chloride had close relationship with C/S ratio of 

hydration products. The chloride in mixing water can increase the C/S ratio from 1.8 to 2.19~2.95. C/S 

ratio in hydration products decides the surface charge of C-S-H gel. For C-S-H gel with high C/S ratio, 

the gels are positively charged and attract the Cl−, OH− and other anion into the surface of C-S-H gels. 

Instead, the surface of C-S-H gels may be negative charged when the C/S ratio lower than 

1.2~1.3(Monteiro P., 1997). In some studies, negative zeta potential was obtained by other testing 

method and instrument, which need to dilute the samples to a very low solid-liquid ratio. The dilution 

process decreases the concentration of Ca2+ in pore solution, and thus promotes the dissolve of calcium 

hydroxide, which may obviously affect the value of zeta potential. In this study, the values of zeta 

potential are all above zero. The formation of hydration products with high C/S ratio after the addition 

of sodium chloride in mixing water increased the zeta potential of freshly mixed cement pastes. 



 

Meantime, zeta potential can also be used to represent the dispersion properties of suspension system. 

Generally speaking, the larger absolute value of zeta potential, the better dispersion properties of 

system. The electrification at the surface of cement particles is complicated, and the signal and density 

of charge at the surface of various mineral admixture particles and hydration products are totally 

different. Electrostatic repulsion is considered as one of the important reasons for particles keep the 

dispersed state, as well as the mechanism of superplasticizer on hydration properties of freshly mixed 

cement pastes(Yu Y H., 2012). Many researches(Plank J., 2007b, Ferrari L., 2010) on mechanism of 

superplasticizer found that the addition of it apparently increased the absolute value of zeta potential. 

It can be seen from our experimental results that chloride ions has a certain role in improving the 

flowing property of cement pastes and can to some degree be considered as a kind of inorganic 

superplasticizer. 

Few studies(Zhang C., 2013) were conducted on the influences of slag on zeta potential of freshly 

mixed cement pastes. The ion concentration at the boundary layer of cementitous materials particles 

has close relationship with zeta potential, and even few added electrolyte brings prominent effects on 

value of zeta potential. During the hydration process, the dissolved mineral admixtures forms new 

electrolyte and affects the system’s charge balance. At the same time, slag can break down the 

flocculation group formed around the cement particles and increase the adsorption group. The results 

that slag increases the absolute value of zeta potential and improve the flowing property of paste is 

consistent with the former study that mineral admixtures was able to promote the flowability of 

cement pastes(Chen L., 2010). 

Among the mineral composition of cement, C3A shows highest hydration activity and have significant 

influences of early hydration and rheological property of cement pastes. In this study, samples after 

only 20min of hydration was chosen for the measurement of zeta potential, thus at that stage C3A was 

the main component that start to hydrate. Research on zeta potential of synthetic C3A at early stage 

revealed that zeta potential sharply increased in the moment that water and C3A was mixed and 

reached up to 20mV about only 2 minutes later. AFt and AFm are the main hydration products of C3A, 

whose  structural formula can be represented as {[C3A]mnAl(OH)4
-.[(n-x)/2Ca2+]}.x(OH)-. With the 

development of hydration, concentration of Ca2+ on the surface of hydration products particle of C3A 

gradually increases and improve the value of zeta potential. Content of Al2O3 in ground granulated 

blast furnace slag (GGBFS) is much higher than cement, therefore the content of C3A in large 

admixture slag cement may be higher than cement without slag, which promote the early hydration 

activity of samples and increase the zeta potential of freshly mixed cement paste.   

4.2 Influences of chloride concentration in soaking solution on chloride concentration index of 

hardened cement paste 

Figure 2 and figure3 is chloride concentration index of samples with different content of slag after 28d 

of bath-curing and 56d and 91d of soaking in chloride solution. After 56d of soaking, chloride 

concentration index gradually decreased with the slag replacement, which was more apparent in low 

concentration of soaking solution. When the soaking reached up to 91d, the chloride ion concentration 

index of pastes with 20% slag showed no obvious differences from the PC samples, then decreased 

with the increase of slag content from 20% to 60%. The paste specimens with 40% and 60% slag 

showed lower concentration indices than the PC samples did over the entire soaking solution 

concentration range. It can be seen that the chloride concentration index of pastes changed from 40% 

to 60% replacement was not as notable as slag replacement increased from 20% to 40%. 
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Figure 2 Chloride concentration index of cement paste after 56d of soaking  
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Figure 3 Chloride concentration index of cement paste after 91d of soaking  

Slag is a kind of potentially hydration active supplementary cementitious material, and produces 

hydration products C-S-H gels react with the primary hydration products Ca(OH)2 of cement. The 

reaction of slag falls behind of the hydration of cement(Wang C., 2000). The increase of slag 

replacement leads to a reduction of cement content, and decreases the content of primary hydration 

product Ca(OH)2 significantly. These may have negative effects on the formation of C-S-H gel and 

adsorption of chloride ions(Yu H., 2007). Meanwhile, the reduction of Ca(OH)2 content and 

adsorption of alkali metal ion to hydration products  results in the decrease of pH of pore solution and 

affects the ionization of silanol sites. The addition of slag may also change the surface properties of 

hydration products and reduce surface potential of pastes(Elakneswaran Y., 2009c). These may all 

show negative effects on physical adsorption of chloride ions within hardened pastes. 

Chemical binding is generally the result of reaction between chlorides and C3A to form Frieda’s salt or 

the reaction with C4AF to form a Frieda’s salt analogue. Sulfates react with C3A and C4AF and form 

ettringite or monosulphate. Thus, SO3 content in the cement has a negative influence on the binding 

capacity, especially in low chloride concentrations (such as 0.1 M). The content of Al2O3 in slag was 

higher than that in the cement, while the content of sulfate was lower, which may enhance the 

chemical binding of cement pastes. Chemical binding and physical adsorption in cement pastes coexist 

in a competitive dynamic process(Luo R., 2001). The enhancement of chemical binding would 

decrease the chloride concentration in pore solution and inhibit the physical adsorption of chloride 

ions onto electrical double layer. The restriction of chemical binding on chloride in concentration may 

be much more obvious for samples soaking in lower concentration of chloride solutions, with the 

increase of concentration of soaking solution, the concentration of chloride in pore solution increased, 

which may weaken the influence of chemical binding on chloride in concentration. 



 

In the meantime, the improvement of pore structure after the slag replacement may block the 

migration of chloride ions within pastes and a longer time is needed for the penetration of chloride into 

small pore. This may be another reason for the decrease of chloride concentration index with the 

replacement of slag.   

4.3 Influences of chloride concentration in soaking solution on zeta potential of hardened cement 

paste 

In figure 4 and figure 5, zeta potential of hardened cement pastes for different slag content 

and soaking solution concentration is showed. After 56d of soaking, zeta potential of pastes 

gradually decreased as concentration of soaking solution increased. Cement pastes samples 

showed decreased zeta potential with the increase of slag content, which is weakened as 

chloride concentration increased. When soaking time reached to 91d, zeta potential of 

samples obviously increased than that of 56d soaking. However, the improvement of zeta 

potential was faster for sample with slag. 
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Figure 4 Zeta potential of cement paste after 56d of soaking 
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Figure 5 Zeta potential of cement paste after 91d of soaking 

Electric double layer can be divided into several part according to the existential form of ions. 

Firstly is potential-determined layer, where ions are chemically bound at the surface of solid, 

the ions in this layer are desolvated. Then the ions adsorbed due to physical and electrostatic 

interaction form the Stern layer. The thickness of Stern layer equals to that of 1 or 2 molecule, 

and contains the solvated ions. The potential of electric double layer is decreased in Stern 

layer from Ψ0 to Ψd. Outside of the Stern layer is the diffusion layer. There exists a shear 

plane in diffusion layer, on the two side of shear plane, one is motionless while another is 

flowable layer. The potential at shear plane is defined as zeta potential related to 

electrokinetic phenomenon. Fig. 6 is the potential changes in electric double layer of Stern 

model as a function of distance from solid phase. 



 

 
 

Figure 6 Potential changes in electric double layer 

According to Stern electric double layer model, potential-determined ions in potential-

determined layer and counter-ions in diffusion layer have close relationship with the zeta 

potential at shear plane. On one hand, the concentration of potential-determined ions affects 

the surface potential of hydration products and the signal and value of zeta potential. On the 

other hand, zeta potential changes with concentration of counter-ions in Stern layer. With the 

increase of electrolyte concentration in pore solution, the concentration of counter-ions in 

Stern layer will also increase, which may result into the more reduction of potential in Stern 

layer and zeta potential. Within cement-based materials, potential-determined layer forms due 

to the adsorption of calcium ions on the surface of hydration products, then the chloride ions 

attracted by potential-determined layer diffused distribute in diffusion layer. It can be known 

that the increase of chloride concentration in soaking solution to some extent increases the 

concentration of counter-ions (Cl-) and potential reduction in Stern layer. When the properties 

and quantity of hydration products and other factors are identical, the decrease of zeta 

potential in electric double layer is simultaneous with increase of soaking solution 

concentration. At the same time, the decrease of C/S ratio in hydration products and pH of 

pore solution caused by the slag replacement may reduce charge density in potential-

determined layer. Thus, zeta potential of hardened cement pastes gradually decreased with 

content of slag. With the extend of soaking time, hydration of slag may increase hydration 

products, which is beneficial to development of zeta potential. 
4.4 Relationship of chloride concentration index and zeta potential 

Figure 7 shows the relationship of measured chloride concentration index and zeta potential. 

A good linear relationship was obtained for our experimental results between concentration 

index and zeta potential. However, it is known that besides zeta potential, pore structure 

distribution, ion composition in pore solution and other factors also affects chloride 

concentration index. In this paper, different fitting equation was established for samples with 

different soaking time and slag replacement. 
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c) 40% SL 
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Figure 7 Relationship of measured chloride concentration index and zeta potential  
The ions distribution in diffusion layer can be modeled by Gouy-Chapman model, based on 

the assumption in this model, the probability of ions in diffusion layer is in direct proportion 

to Boltzmann factor e-zeψ/kT. The ion concentration in diffusion layer can be showed as follow: 

)exp(0 kT
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                                              （8） 

Where, n+、n-——the number of cation or anion per unit volume solution; 

           n0——the number of ions per unit volume solution at the distance where electric 

neutrality（ψ=0）reaches； 

           z——charge number of cation or anion； 

           ψ——the potential at x distance from shear plane。 

According to classical theory of electrostatics, the relationship of potential on the side of 

solution and the distance from solid surface (or shear plane) can be showed by Possion 

equation.  
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Where，ε0, εr——vacuum permittivity of electric double layer and relative permittivity of 

solution media； 

           ▽2——Laplace operator, which express the divergence of a function； 

                       ρ——the number of negative charge per unit volume minus that of positive 

charge. 

Solving the equation above with boundary conditions introduced, the following result 

obtained: 
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Where,
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 is defined as effective thickness of diffused electric double layer； 

y=zeψ/kT, y0 equals to the value of y at x=0. 

Considering the value of y, in this experiment, the maximum value of zeta potential equals to 

7.87mV. Introduced into the equation above, the value of y is 0.3114. Therefore, in this study, 

the value of y calculated is all lower than 1.0, so series expanded ey/2 and leave the former two 

items:  
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Substitutes it into formula 10, then： 
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Substitutes formula 11 and effective thickness of electric double layer into formula 8: 
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Do the integral for chloride concentration in diffusion layer, we can obtain the average 

concentration of chloride ions, that is: 
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It can be known more clearly form the formula above that, the increase of chloride 

concentration in soaking solution on one hand decreases the thickness of diffusion layer in 

electric double layer and probability of chloride ions exist in electric double layer. On the 

other hand, it results into the increase of counter-ions concentration in Stern layer and 

decreases zeta potential of electric double layer. He(He F., 2010) studied the thickness of 

electric double layer and found that it decreased significantly with concentration of bulk 

solution, which became less obvious when the concentration higher than 0.5mol/L. These can 

be used to interpret the decreased concentration index with the increase of chloride 

concentration in soaking solution. 

Pore structure of cement-based materials has close relationship with chloride concentration 

index. Then, a formula for chloride concentration index calculation is obtained based on the 

assumption of cylindrical pore model (figure 8) and pore diameter distribution (table 2). The 

results are showed in figure 9. The vacuum permittivity of electric double layer is 8.854*10-

12F/m and relative permittivity of sodium chloride solution is calculated by the fitting formula 

proposed in references(Yang X Q., 2006).  
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Tab. 2 Assumed pore diameter distribution 

 0~5nm 5~10nm 10~50nm 50~1000nm 

Average/nm 2.5 7.5 30 500 

Percentage/% 20 10 60 10 

It can be seen from figure 9 and figure 10 that after 56d and 91d of soaking, the development 

of calculated concentration index with chloride concentration in soaking solution and slag 

replacement is in agreement with the measured results. However, the value of calculated 

concentration index is much lower than measured results. Two reasons may be responsible. 

The first is we assumed the pore shape as cylindrical model and a simple pore diameter 

distribution. However, the specific surface area of hydration products is much higher and 

there existed many capillary and gel pore within cement pastes, which may promote the 

chloride concentration significantly. Specially, for some small pore, the electrical double layer 

may overlap with each other and have positive effects on chloride concentration. Secondly, 

the method we used to measure the zeta potential has to grind the hardened cement pastes into 

powder and mix with same mass of corresponding soaking solution. These may change the 



 

condition around the solid phase and affects the measured zeta potential. A new non-

destructive testing method which can measure the zeta potential of hardened cement pastes 

may be helpful for further study. 
L
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Figure 8 Pore structure model within cement-based materials 
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Figure 9 Calculated chloride concentration index after 56d of soaking  
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Figure 10 Calculated chloride concentration index after 91d of soaking 



 

5. Conclusions 
Based on the results and discussion above, the following conclusion can be made: 

(1)Zeta potential of freshly mixed cement pastes gradually increased with the sodium chloride 

concentration in mix ingwater. At the same time, slag also higher the zeta potential of samples. 

(2)With the increase of chloride concentration in soaking solution, the chloride concentration 

index of paste samples decreased significantly. After soaking 56d, chloride concentration 

index gradually decreased with the slag replacement. 91d of soaking, chloride concentration 

index of samples with 20% slag reached the same level as control group. 

(3)Zeta potential of hardened cement pastes was decreased with the increase of soaking 

solution concentration and slag content, while this effects was weakened as concentration of 

soaking solution increased.  

(4)Chloride concentration index can be calculated by Gouy-Chapman model based on 

provided zeta potential and pore diameter distribution.  
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