1,829 research outputs found
Consistency Conditions on S-Matrix of Spin 1 Massless Particles
Motivated by new techniques in the computation of scattering amplitudes of
massless particles in four dimensions, like BCFW recursion relations, the
question of how much structure of the S-matrix can be determined from purely
S-matrix arguments has received new attention. The BCFW recursion relations for
massless particles of spin 1 and 2 imply that the whole tree-level S-matrix can
be determined in terms of three-particle amplitudes (evaluated at complex
momenta). However, the known proofs of the validity of the relations rely on
the Lagrangian of the theory, either by using Feynman diagrams explicitly or by
studying the effective theory at large complex momenta. This means that a
purely S-matrix theoretic proof of the relations is still missing. The aim of
this paper is to provide such a proof for spin 1 particles by extending the
four-particle test introduced by P. Benincasa and F. Cachazo in
arXiv:0705.4305[hep-th] to all particles. We show how n-particle tests imply
that the rational function built from the BCFW recursion relations possesses
all the correct factorization channels including holomorphic and
anti-holomorphic collinear limits. This in turn implies that they give the
correct S-matrix of the theory.Comment: 24 pages, 4 figure
Climbing the Jaynes-Cummings Ladder and Observing its Sqrt(n) Nonlinearity in a Cavity QED System
The already very active field of cavity quantum electrodynamics (QED),
traditionally studied in atomic systems, has recently gained additional
momentum by the advent of experiments with semiconducting and superconducting
systems. In these solid state implementations, novel quantum optics experiments
are enabled by the possibility to engineer many of the characteristic
parameters at will. In cavity QED, the observation of the vacuum Rabi mode
splitting is a hallmark experiment aimed at probing the nature of matter-light
interaction on the level of a single quantum. However, this effect can, at
least in principle, be explained classically as the normal mode splitting of
two coupled linear oscillators. It has been suggested that an observation of
the scaling of the resonant atom-photon coupling strength in the
Jaynes-Cummings energy ladder with the square root of photon number n is
sufficient to prove that the system is quantum mechanical in nature. Here we
report a direct spectroscopic observation of this characteristic quantum
nonlinearity. Measuring the photonic degree of freedom of the coupled system,
our measurements provide unambiguous, long sought for spectroscopic evidence
for the quantum nature of the resonant atom-field interaction in cavity QED. We
explore atom-photon superposition states involving up to two photons, using a
spectroscopic pump and probe technique. The experiments have been performed in
a circuit QED setup, in which ultra strong coupling is realized by the large
dipole coupling strength and the long coherence time of a superconducting qubit
embedded in a high quality on-chip microwave cavity.Comment: ArXiv version of manuscript published in Nature in July 2008, 5
pages, 5 figures, hi-res version at
http://www.finkjohannes.com/SqrtNArxivPreprint.pd
Quantum jumps of light recording the birth and death of a photon in a cavity
A microscopic system under continuous observation exhibits at random times
sudden jumps between its states. The detection of this essential quantum
feature requires a quantum non-demolition (QND) measurement repeated many times
during the system evolution. Quantum jumps of trapped massive particles
(electrons, ions or molecules) have been observed, which is not the case of the
jumps of light quanta. Usual photodetectors absorb light and are thus unable to
detect the same photon twice. They must be replaced by a transparent counter
'seeing' photons without destroying them3. Moreover, the light has to be stored
over a duration much longer than the QND detection time. We have fulfilled
these challenging conditions and observed photon number quantum jumps.
Microwave photons are stored in a superconducting cavity for times in the
second range. They are repeatedly probed by a stream of non-absorbing atoms. An
atom interferometer measures the atomic dipole phase shift induced by the
non-resonant cavity field, so that the final atom state reveals directly the
presence of a single photon in the cavity. Sequences of hundreds of atoms
highly correlated in the same state, are interrupted by sudden
state-switchings. These telegraphic signals record, for the first time, the
birth, life and death of individual photons. Applying a similar QND procedure
to mesoscopic fields with tens of photons opens new perspectives for the
exploration of the quantum to classical boundary
Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum
BACKGROUND: Quantification of the metabolic network of an organism offers insights into possible ways of developing mutant strain for better productivity of an extracellular metabolite. The first step in this quantification is the enumeration of stoichiometries of all reactions occurring in a metabolic network. The structural details of the network in combination with experimentally observed accumulation rates of external metabolites can yield flux distribution at steady state. One such methodology for quantification is the use of elementary modes, which are minimal set of enzymes connecting external metabolites. Here, we have used a linear objective function subject to elementary modes as constraint to determine the fluxes in the metabolic network of Corynebacterium glutamicum. The feasible phenotypic space was evaluated at various combinations of oxygen and ammonia uptake rates. RESULTS: Quantification of the fluxes of the elementary modes in the metabolism of C. glutamicum was formulated as linear programming. The analysis demonstrated that the solution was dependent on the criteria of objective function when less than four accumulation rates of the external metabolites were considered. The analysis yielded feasible ranges of fluxes of elementary modes that satisfy the experimental accumulation rates. In C. glutamicum, the elementary modes relating to biomass synthesis through glycolysis and TCA cycle were predominantly operational in the initial growth phase. At a later time, the elementary modes contributing to lysine synthesis became active. The oxygen and ammonia uptake rates were shown to be bounded in the phenotypic space due to the stoichiometric constraint of the elementary modes. CONCLUSION: We have demonstrated the use of elementary modes and the linear programming to quantify a metabolic network. We have used the methodology to quantify the network of C. glutamicum, which evaluates the set of operational elementary modes at different phases of fermentation. The methodology was also used to determine the feasible solution space for a given set of substrate uptake rates under specific optimization criteria. Such an approach can be used to determine the optimality of the accumulation rates of any metabolite in a given network
Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling
FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxoindependent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor. Molecular Systems Biology 7: 502; published online 21 June 2011; doi:10.1038/msb.2011.3
Nonlinear response of the vacuum Rabi resonance
On the level of single atoms and photons, the coupling between atoms and the
electromagnetic field is typically very weak. By employing a cavity to confine
the field, the strength of this interaction can be increased many orders of
magnitude to a point where it dominates over any dissipative process. This
strong-coupling regime of cavity quantum electrodynamics has been reached for
real atoms in optical cavities, and for artificial atoms in circuit QED and
quantum-dot systems. A signature of strong coupling is the splitting of the
cavity transmission peak into a pair of resolvable peaks when a single resonant
atom is placed inside the cavity - an effect known as vacuum Rabi splitting.
The circuit QED architecture is ideally suited for going beyond this linear
response effect. Here, we show that increasing the drive power results in two
unique nonlinear features in the transmitted heterodyne signal: the
supersplitting of each vacuum Rabi peak into a doublet, and the appearance of
additional peaks with the characteristic sqrt(n) spacing of the Jaynes-Cummings
ladder. These constitute direct evidence for the coupling between the quantized
microwave field and the anharmonic spectrum of a superconducting qubit acting
as an artificial atom.Comment: 6 pages, 4 figures. Supplementary Material and Supplementary Movies
are available at http://www.eng.yale.edu/rslab/publications.htm
Resolving photon number states in a superconducting circuit
Electromagnetic signals are always composed of photons, though in the circuit
domain those signals are carried as voltages and currents on wires, and the
discreteness of the photon's energy is usually not evident. However, by
coupling a superconducting qubit to signals on a microwave transmission line,
it is possible to construct an integrated circuit where the presence or absence
of even a single photon can have a dramatic effect. This system is called
circuit quantum electrodynamics (QED) because it is the circuit equivalent of
the atom-photon interaction in cavity QED. Previously, circuit QED devices were
shown to reach the resonant strong coupling regime, where a single qubit can
absorb and re-emit a single photon many times. Here, we report a circuit QED
experiment which achieves the strong dispersive limit, a new regime of cavity
QED in which a single photon has a large effect on the qubit or atom without
ever being absorbed. The hallmark of this strong dispersive regime is that the
qubit transition can be resolved into a separate spectral line for each photon
number state of the microwave field. The strength of each line is a measure of
the probability to find the corresponding photon number in the cavity. This
effect has been used to distinguish between coherent and thermal fields and
could be used to create a photon statistics analyzer. Since no photons are
absorbed by this process, one should be able to generate non-classical states
of light by measurement and perform qubit-photon conditional logic, the basis
of a logic bus for a quantum computer.Comment: 6 pages, 4 figures, hi-res version at
http://www.eng.yale.edu/rslab/papers/numbersplitting_hires.pd
Single-shot qubit readout in circuit Quantum Electrodynamics
The future development of quantum information using superconducting circuits
requires Josephson qubits [1] with long coherence times combined to a
high-fidelity readout. Major progress in the control of coherence has recently
been achieved using circuit quantum electrodynamics (cQED) architectures [2,
3], where the qubit is embedded in a coplanar waveguide resonator (CPWR) which
both provides a well controlled electromagnetic environment and serves as qubit
readout. In particular a new qubit design, the transmon, yields reproducibly
long coherence times [4, 5]. However, a high-fidelity single-shot readout of
the transmon, highly desirable for running simple quantum algorithms or measur-
ing quantum correlations in multi-qubit experiments, is still lacking. In this
work, we demonstrate a new transmon circuit where the CPWR is turned into a
sample-and-hold detector, namely a Josephson Bifurcation Amplifer (JBA) [6, 7],
which allows both fast measurement and single-shot discrimination of the qubit
states. We report Rabi oscillations with a high visibility of 94% together with
dephasing and relaxation times longer than 0:5 \mu\s. By performing two
subsequent measurements, we also demonstrate that this new readout does not
induce extra qubit relaxation.Comment: 14 pages including 4 figures, preprint forma
Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box
Under appropriate conditions, superconducting electronic circuits behave
quantum mechanically, with properties that can be designed and controlled at
will. We have realized an experiment in which a superconducting two-level
system, playing the role of an artificial atom, is strongly coupled to a single
photon stored in an on-chip cavity. We show that the atom-photon coupling in
this circuit can be made strong enough for coherent effects to dominate over
dissipation, even in a solid state environment. This new regime of matter light
interaction in a circuit can be exploited for quantum information processing
and quantum communication. It may also lead to new approaches for single photon
generation and detection.Comment: 8 pages, 4 figures, accepted for publication in Nature, embargo does
apply, version with high resolution figures available at:
http://www.eng.yale.edu/rslab/Andreas/content/science/PubsPapers.htm
- …