1,825 research outputs found

    Consistency Conditions on S-Matrix of Spin 1 Massless Particles

    Full text link
    Motivated by new techniques in the computation of scattering amplitudes of massless particles in four dimensions, like BCFW recursion relations, the question of how much structure of the S-matrix can be determined from purely S-matrix arguments has received new attention. The BCFW recursion relations for massless particles of spin 1 and 2 imply that the whole tree-level S-matrix can be determined in terms of three-particle amplitudes (evaluated at complex momenta). However, the known proofs of the validity of the relations rely on the Lagrangian of the theory, either by using Feynman diagrams explicitly or by studying the effective theory at large complex momenta. This means that a purely S-matrix theoretic proof of the relations is still missing. The aim of this paper is to provide such a proof for spin 1 particles by extending the four-particle test introduced by P. Benincasa and F. Cachazo in arXiv:0705.4305[hep-th] to all particles. We show how n-particle tests imply that the rational function built from the BCFW recursion relations possesses all the correct factorization channels including holomorphic and anti-holomorphic collinear limits. This in turn implies that they give the correct S-matrix of the theory.Comment: 24 pages, 4 figure

    Climbing the Jaynes-Cummings Ladder and Observing its Sqrt(n) Nonlinearity in a Cavity QED System

    Full text link
    The already very active field of cavity quantum electrodynamics (QED), traditionally studied in atomic systems, has recently gained additional momentum by the advent of experiments with semiconducting and superconducting systems. In these solid state implementations, novel quantum optics experiments are enabled by the possibility to engineer many of the characteristic parameters at will. In cavity QED, the observation of the vacuum Rabi mode splitting is a hallmark experiment aimed at probing the nature of matter-light interaction on the level of a single quantum. However, this effect can, at least in principle, be explained classically as the normal mode splitting of two coupled linear oscillators. It has been suggested that an observation of the scaling of the resonant atom-photon coupling strength in the Jaynes-Cummings energy ladder with the square root of photon number n is sufficient to prove that the system is quantum mechanical in nature. Here we report a direct spectroscopic observation of this characteristic quantum nonlinearity. Measuring the photonic degree of freedom of the coupled system, our measurements provide unambiguous, long sought for spectroscopic evidence for the quantum nature of the resonant atom-field interaction in cavity QED. We explore atom-photon superposition states involving up to two photons, using a spectroscopic pump and probe technique. The experiments have been performed in a circuit QED setup, in which ultra strong coupling is realized by the large dipole coupling strength and the long coherence time of a superconducting qubit embedded in a high quality on-chip microwave cavity.Comment: ArXiv version of manuscript published in Nature in July 2008, 5 pages, 5 figures, hi-res version at http://www.finkjohannes.com/SqrtNArxivPreprint.pd

    Quantum jumps of light recording the birth and death of a photon in a cavity

    Full text link
    A microscopic system under continuous observation exhibits at random times sudden jumps between its states. The detection of this essential quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system evolution. Quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, which is not the case of the jumps of light quanta. Usual photodetectors absorb light and are thus unable to detect the same photon twice. They must be replaced by a transparent counter 'seeing' photons without destroying them3. Moreover, the light has to be stored over a duration much longer than the QND detection time. We have fulfilled these challenging conditions and observed photon number quantum jumps. Microwave photons are stored in a superconducting cavity for times in the second range. They are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms highly correlated in the same state, are interrupted by sudden state-switchings. These telegraphic signals record, for the first time, the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons opens new perspectives for the exploration of the quantum to classical boundary

    Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum

    Get PDF
    BACKGROUND: Quantification of the metabolic network of an organism offers insights into possible ways of developing mutant strain for better productivity of an extracellular metabolite. The first step in this quantification is the enumeration of stoichiometries of all reactions occurring in a metabolic network. The structural details of the network in combination with experimentally observed accumulation rates of external metabolites can yield flux distribution at steady state. One such methodology for quantification is the use of elementary modes, which are minimal set of enzymes connecting external metabolites. Here, we have used a linear objective function subject to elementary modes as constraint to determine the fluxes in the metabolic network of Corynebacterium glutamicum. The feasible phenotypic space was evaluated at various combinations of oxygen and ammonia uptake rates. RESULTS: Quantification of the fluxes of the elementary modes in the metabolism of C. glutamicum was formulated as linear programming. The analysis demonstrated that the solution was dependent on the criteria of objective function when less than four accumulation rates of the external metabolites were considered. The analysis yielded feasible ranges of fluxes of elementary modes that satisfy the experimental accumulation rates. In C. glutamicum, the elementary modes relating to biomass synthesis through glycolysis and TCA cycle were predominantly operational in the initial growth phase. At a later time, the elementary modes contributing to lysine synthesis became active. The oxygen and ammonia uptake rates were shown to be bounded in the phenotypic space due to the stoichiometric constraint of the elementary modes. CONCLUSION: We have demonstrated the use of elementary modes and the linear programming to quantify a metabolic network. We have used the methodology to quantify the network of C. glutamicum, which evaluates the set of operational elementary modes at different phases of fermentation. The methodology was also used to determine the feasible solution space for a given set of substrate uptake rates under specific optimization criteria. Such an approach can be used to determine the optimality of the accumulation rates of any metabolite in a given network

    Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling

    Get PDF
    FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxoindependent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor. Molecular Systems Biology 7: 502; published online 21 June 2011; doi:10.1038/msb.2011.3

    Nonlinear response of the vacuum Rabi resonance

    Full text link
    On the level of single atoms and photons, the coupling between atoms and the electromagnetic field is typically very weak. By employing a cavity to confine the field, the strength of this interaction can be increased many orders of magnitude to a point where it dominates over any dissipative process. This strong-coupling regime of cavity quantum electrodynamics has been reached for real atoms in optical cavities, and for artificial atoms in circuit QED and quantum-dot systems. A signature of strong coupling is the splitting of the cavity transmission peak into a pair of resolvable peaks when a single resonant atom is placed inside the cavity - an effect known as vacuum Rabi splitting. The circuit QED architecture is ideally suited for going beyond this linear response effect. Here, we show that increasing the drive power results in two unique nonlinear features in the transmitted heterodyne signal: the supersplitting of each vacuum Rabi peak into a doublet, and the appearance of additional peaks with the characteristic sqrt(n) spacing of the Jaynes-Cummings ladder. These constitute direct evidence for the coupling between the quantized microwave field and the anharmonic spectrum of a superconducting qubit acting as an artificial atom.Comment: 6 pages, 4 figures. Supplementary Material and Supplementary Movies are available at http://www.eng.yale.edu/rslab/publications.htm

    Resolving photon number states in a superconducting circuit

    Full text link
    Electromagnetic signals are always composed of photons, though in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting qubit to signals on a microwave transmission line, it is possible to construct an integrated circuit where the presence or absence of even a single photon can have a dramatic effect. This system is called circuit quantum electrodynamics (QED) because it is the circuit equivalent of the atom-photon interaction in cavity QED. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit can absorb and re-emit a single photon many times. Here, we report a circuit QED experiment which achieves the strong dispersive limit, a new regime of cavity QED in which a single photon has a large effect on the qubit or atom without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability to find the corresponding photon number in the cavity. This effect has been used to distinguish between coherent and thermal fields and could be used to create a photon statistics analyzer. Since no photons are absorbed by this process, one should be able to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.Comment: 6 pages, 4 figures, hi-res version at http://www.eng.yale.edu/rslab/papers/numbersplitting_hires.pd

    Single-shot qubit readout in circuit Quantum Electrodynamics

    Get PDF
    The future development of quantum information using superconducting circuits requires Josephson qubits [1] with long coherence times combined to a high-fidelity readout. Major progress in the control of coherence has recently been achieved using circuit quantum electrodynamics (cQED) architectures [2, 3], where the qubit is embedded in a coplanar waveguide resonator (CPWR) which both provides a well controlled electromagnetic environment and serves as qubit readout. In particular a new qubit design, the transmon, yields reproducibly long coherence times [4, 5]. However, a high-fidelity single-shot readout of the transmon, highly desirable for running simple quantum algorithms or measur- ing quantum correlations in multi-qubit experiments, is still lacking. In this work, we demonstrate a new transmon circuit where the CPWR is turned into a sample-and-hold detector, namely a Josephson Bifurcation Amplifer (JBA) [6, 7], which allows both fast measurement and single-shot discrimination of the qubit states. We report Rabi oscillations with a high visibility of 94% together with dephasing and relaxation times longer than 0:5 \mu\s. By performing two subsequent measurements, we also demonstrate that this new readout does not induce extra qubit relaxation.Comment: 14 pages including 4 figures, preprint forma

    Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box

    Full text link
    Under appropriate conditions, superconducting electronic circuits behave quantum mechanically, with properties that can be designed and controlled at will. We have realized an experiment in which a superconducting two-level system, playing the role of an artificial atom, is strongly coupled to a single photon stored in an on-chip cavity. We show that the atom-photon coupling in this circuit can be made strong enough for coherent effects to dominate over dissipation, even in a solid state environment. This new regime of matter light interaction in a circuit can be exploited for quantum information processing and quantum communication. It may also lead to new approaches for single photon generation and detection.Comment: 8 pages, 4 figures, accepted for publication in Nature, embargo does apply, version with high resolution figures available at: http://www.eng.yale.edu/rslab/Andreas/content/science/PubsPapers.htm
    corecore