8,938 research outputs found

    Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    Get PDF
    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as “robustness” for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas

    Memory difference control of unknown unstable fixed points: Drifting parameter conditions and delayed measurement

    Full text link
    Difference control schemes for controlling unstable fixed points become important if the exact position of the fixed point is unavailable or moving due to drifting parameters. We propose a memory difference control method for stabilization of a priori unknown unstable fixed points by introducing a memory term. If the amplitude of the control applied in the previous time step is added to the present control signal, fixed points with arbitrary Lyapunov numbers can be controlled. This method is also extended to compensate arbitrary time steps of measurement delay. We show that our method stabilizes orbits of the Chua circuit where ordinary difference control fails.Comment: 5 pages, 8 figures. See also chao-dyn/9810029 (Phys. Rev. E 70, 056225) and nlin.CD/0204031 (Phys. Rev. E 70, 046205

    Intermittency as a universal characteristic of the complete chromosome DNA sequences of eukaryotes: From protozoa to human genomes

    Full text link
    Large-scale dynamical properties of complete chromosome DNA sequences of eukaryotes are considered. By the proposed deterministic models with intermittency and symbolic dynamics we describe a wide spectrum of large-scale patterns inherent in these sequences, such as segmental duplications, tandem repeats, and other complex sequence structures. It is shown that the recently discovered gene number balance on the strands is not of random nature, and a complete chromosome DNA sequence exhibits the properties of deterministic chaos.Comment: 4 pages, 5 figure

    Control of gradient-driven instabilities using shear Alfv\'en beat waves

    Full text link
    A new technique for manipulation and control of gradient-driven instabilities through nonlinear interaction with Alfv\'en waves in a laboratory plasma is presented. A narrow field-aligned density depletion is created in the Large Plasma Device (LAPD), resulting in coherent unstable fluctuations on the periphery of the depletion. Two independent kinetic Alfv\'en waves are launched along the depletion at separate frequencies, creating a nonlinear beat-wave response at or near the frequency of the original instability. When the beat-wave has sufficient amplitude, the original unstable mode is suppressed, leaving only the beat-wave response at a different frequency, generally at lower amplitude.Comment: Submitted for Publication in Physical Review Letters. Revision 2 reflects changes suggested by referees for PRL submission. One figure removed, several major changes to another figure, and a number of major and minor changes to the tex

    Avalanches in a Bose-Einstein condensate

    Get PDF
    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87-Rb condensate. We show that the collisional opacity of an ultra-cold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under these circumstances, reaching the hydrodynamic regime in conventional BEC experiments is highly questionable.Comment: 4 pages, 2 figures, 1 tabl

    Sublattice synchronization of chaotic networks with delayed couplings

    Full text link
    Synchronization of chaotic units coupled by their time delayed variables are investigated analytically. A new type of cooperative behavior is found: sublattice synchronization. Although the units of one sublattice are not directly coupled to each other, they completely synchronize without time delay. The chaotic trajectories of different sublattices are only weakly correlated but not related by generalized synchronization. Nevertheless, the trajectory of one sublattice is predictable from the complete trajectory of the other one. The spectra of Lyapunov exponents are calculated analytically in the limit of infinite delay times, and phase diagrams are derived for different topologies

    Biogeochemical variations at the Porcupine Abyssal Plain sustained Observatory in the northeast Atlantic Ocean, from weekly to inter-annual timescales

    Get PDF
    We present high-resolution autonomous measurements of carbon dioxide partial pressure p(CO2) taken in situ at the Porcupine Abyssal Plain sustained Observatory (PAP-SO) in the northeast Atlantic (49° N, 16.5° W; water depth of 4850 m) for the period 2010–2012. Measurements of p(CO2) made at 30 m depth on a sensor frame are compared with other autonomous biogeochemical measurements at that depth (including chlorophyll a fluorescence and nitrate concentration data) to analyse weekly to seasonal controls on p(CO2) flux in the inter-gyre region of the North Atlantic. Comparisons are also made with in situ regional time series data from a ship of opportunity and mixed layer depth (MLD) measurements from profiling Argo floats. There is a persistent under-saturation of CO2 in surface waters throughout the year which gives rise to a perennial CO2 sink. Comparison with an earlier data set collected at the site (2003–2005) confirms seasonal and inter-annual changes in surface seawater chemistry. There is year-to-year variability in the timing of deep winter mixing and the intensity of the spring bloom.The 2010–2012 period shows an overall increase in p(CO2) values when compared to the 2003–2005 period as would be expected from increases due to anthropogenic CO2 emissions. The surface temperature, wind speed and MLD measurements are similar for both periods of time. Future work should incorporate daily CO2 flux measurements made using CO2 sensors at 1 m depth and the in situ wind speed data now available from the UK Met Office Buoy

    The dynamics of laser droplet generation

    Full text link
    We propose an experimental setup allowing for the characterization of laser droplet generation in terms of the underlying dynamics, primarily showing that the latter is deterministically chaotic by means of nonlinear time series analysis methods. In particular, we use a laser pulse to melt the end of a properly fed vertically placed metal wire. Due to the interplay of surface tension, gravity force and light-metal interaction, undulating pendant droplets are formed at the molten end, which eventually completely detach from the wire as a consequence of their increasing mass. We capture the dynamics of this process by employing a high-speed infrared camera, thereby indirectly measuring the temperature of the wire end and the pendant droplets. The time series is subsequently generated as the mean value over the pixel intensity of every infrared snapshot. Finally, we employ methods of nonlinear time series analysis to reconstruct the phase space from the observed variable and test it against determinism and stationarity. After establishing that the observed laser droplet generation is a deterministic and dynamically stationary process, we calculate the spectra of Lyapunov exponents. We obtain a positive largest Lyapunov exponent and a negative divergence, i.e., sum of all the exponents, thus indicating that the observed dynamics is deterministically chaotic with an attractor as solution in the phase space. In addition to characterizing the dynamics of laser droplet generation, we outline industrial applications of the process and point out the significance of our findings for future attempts at mathematical modeling.Comment: 7 two-column pages, 8 figures; accepted for publication in Chaos [supplementary material available at http://www.matjazperc.com/chaos/laser.html

    Triggering up states in all-to-all coupled neurons

    Full text link
    Slow-wave sleep in mammalians is characterized by a change of large-scale cortical activity currently paraphrased as cortical Up/Down states. A recent experiment demonstrated a bistable collective behaviour in ferret slices, with the remarkable property that the Up states can be switched on and off with pulses, or excitations, of same polarity; whereby the effect of the second pulse significantly depends on the time interval between the pulses. Here we present a simple time discrete model of a neural network that exhibits this type of behaviour, as well as quantitatively reproduces the time-dependence found in the experiments.Comment: epl Europhysics Letters, accepted (2010
    • …
    corecore