9,499 research outputs found

    Parallels between the dynamics at the noise-perturbed onset of chaos in logistic maps and the dynamics of glass formation

    Full text link
    We develop the characterization of the dynamics at the noise-perturbed edge of chaos in logistic maps in terms of the quantities normally used to describe glassy properties in structural glass formers. Following the recognition [Phys. Lett. \textbf{A 328}, 467 (2004)] that the dynamics at this critical attractor exhibits analogies with that observed in thermal systems close to vitrification, we determine the modifications that take place with decreasing noise amplitude in ensemble and time averaged correlations and in diffusivity. We corroborate explicitly the occurrence of two-step relaxation, aging with its characteristic scaling property, and subdiffusion and arrest for this system. We also discuss features that appear to be specific of the map.Comment: Revised version with substantial improvements. Revtex, 8 pages, 11 figure

    Weak conditions for interpolation in holomorphic spaces

    Get PDF
    An analogue of the notion of uniformly separated sequences, expressed in terms of extremal functions, yields a necessary and sufficient condition for interpolation in Lp spaces of holomorphic functions of Paley-Wiener-type when 0 < p \leq 1, of Fock-type when 0 < p \leq 2, and of Bergman-type when 0 < p < \infty. Moreover, if a uniformly discrete sequence has a certain uniform non-uniqueness property with respect to any such Lp space (00 lt; p &lt; \infty$), then it is an interpolation sequence for that space. The proofs of these results are based on an approximation theorem for subharmonic functions, Beurling's results concerning compactwise limits of sequences, and the description of interpolation sequences in terms of Beurling-type densities. Details are carried out only for Fock spaces, which represent the most difficult case

    Deep learning based pulse shape discrimination for germanium detectors

    Full text link
    Experiments searching for rare processes like neutrinoless double beta decay heavily rely on the identification of background events to reduce their background level and increase their sensitivity. We present a novel machine learning based method to recognize one of the most abundant classes of background events in these experiments. By combining a neural network for feature extraction with a smaller classification network, our method can be trained with only a small number of labeled events. To validate our method, we use signals from a broad-energy germanium detector irradiated with a 228^{228}Th gamma source. We find that it matches the performance of state-of-the-art algorithms commonly used for this detector type. However, it requires less tuning and calibration and shows potential to identify certain types of background events missed by other methods.Comment: Published in Eur. Phys. J. C. 9 pages, 10 figures, 3 table

    Control of gradient-driven instabilities using shear Alfv\'en beat waves

    Full text link
    A new technique for manipulation and control of gradient-driven instabilities through nonlinear interaction with Alfv\'en waves in a laboratory plasma is presented. A narrow field-aligned density depletion is created in the Large Plasma Device (LAPD), resulting in coherent unstable fluctuations on the periphery of the depletion. Two independent kinetic Alfv\'en waves are launched along the depletion at separate frequencies, creating a nonlinear beat-wave response at or near the frequency of the original instability. When the beat-wave has sufficient amplitude, the original unstable mode is suppressed, leaving only the beat-wave response at a different frequency, generally at lower amplitude.Comment: Submitted for Publication in Physical Review Letters. Revision 2 reflects changes suggested by referees for PRL submission. One figure removed, several major changes to another figure, and a number of major and minor changes to the tex

    Sierpinski signal generates 1/fα1/f^\alpha spectra

    Full text link
    We investigate the row sum of the binary pattern generated by the Sierpinski automaton: Interpreted as a time series we calculate the power spectrum of this Sierpinski signal analytically and obtain a unique rugged fine structure with underlying power law decay with an exponent of approximately 1.15. Despite the simplicity of the model, it can serve as a model for 1/fα1/f^\alpha spectra in a certain class of experimental and natural systems like catalytic reactions and mollusc patterns.Comment: 4 pages (4 figs included). Accepted for publication in Physical Review

    Yield Strength Increase of Cold Formed Sections Due to Cold Work of Forming

    Get PDF
    The design approach for predicting the increase in yield strength due to cold work of forming in the AISI 1996 Specification for the Design of Cold-Formed Steel Structural members is different from the approach used by the CSA Standard, CSA S136-94, Cold Formed Steel Structural Members. The AISI approach is based on the experimental work conducted by Karren and Winter, while the S136 approach is based on theoretical work by Lind and Schroff. Lind and Schroff used Karren and Winter\u27s data to substantiate their theory. Karren and Winter conducted tests on five full sections and also collected strength data on the flat and corner elements of the same sections, allowing for comparison oftested to calculated values. Twelve different sections were tested as part of the University of Waterloo test program. Strength data was collected on virgin material, full sections and on the flat elements of formed sections, thus permitting comparisons to be made using only experimental data. The main purpose of this investigation was to help answer two questions, Le., 1) should the average yield strength in the flats after forming be allowed in either design approach? and 2) is there a simplified expression that would produce similar results with fewer inputs? Based on the research of this paper, design recommendations were formulated

    Trapping and observing single atoms in the dark

    Get PDF
    A single atom strongly coupled to a cavity mode is stored by three-dimensional confinement in blue-detuned cavity modes of different longitudinal and transverse order. The vanishing light intensity at the trap center reduces the light shift of all atomic energy levels. This is exploited to detect a single atom by means of a dispersive measurement with 95% confidence in 0.010 ms, limited by the photon-detection efficiency. As the atom switches resonant cavity transmission into cavity reflection, the atom can be detected while scattering about one photon
    • …
    corecore