258 research outputs found

    Moving towards a More Sustainable World : four Essays on Renewable Energy, Emissions Trading, and Environmental Behaviour

    Get PDF
    Reducing industrial greenhouse gas emissions is essential to fight climate change. In addition, private consumption patterns have effects on emissions and the sustainable use of natural resources. This thesis examines the effect of certain environmental policies on Swedish industries and its greenhouse gas emissions, and also analyses household consumption patterns of environmental goods. The EU emission trading system (ETS) is a market-based instrument to reduce greenhouse gas emissions. Its effectiveness is under constant scrutiny, in particular since regulatory changes of the third phase are expected to have larger impacts on carbon emissions. An empirical study is conducted to evaluate the effect of the different phases of the EU emission trading system on firms’ carbon emissions and, on their low-carbon innovation activity. Results indicate that low-carbon patenting and environmental and air-related investments in firms regulated by the emission trading system have increased over time, but emissions did not decrease. Swedish firms regulated by the ETS showed better economic indicators during the first phase. When the ETS was introduced, Sweden already had in place an energy policy with the goal to increase renewable energy capacities. It is analysed whether the combination of these two systems results in counterproductive price signals. The results suggest that this is not the case. Sustainable consumption patterns must complement sustainable production. Therefore, the thesis also studies the relation of households’ green consumption and behaviour patterns, and finds that households’ willingness to pay for environmental goods in different domains tend to be complements whereas behaviours tend to be substitutes

    Die Bedeutung des Mx-Proteins in der Influenza-Abwehr beim Huhn

    Get PDF
    Influenza A virus infections are a major threat to the world poultry population. In the 19th century fatal influenza A virus infections have been described under the name “fowl plague” in chickens. The chicken is a natural host for this viral infection. The myxovirus resistance (Mx) gene which belongs to the group of interferon stimulated genes (ISG) was first described in mice. This protein confers protection against highly pathogenic influenza A viruses in mice. Mx proteins have been characterized in many species including mammals, poultry and fish. They belong to the family of large GTPase proteins exhibiting three highly conserved GTP-binding motifs at the amino-terminus and a leucin zipper at the carboxy-terminus. The GTPase activity was been shown to be essential for the antiviral activity of the Mx protein. Mx was also identified in the chicken, where it shows a significant degree of polymorphism. A polymorphism at aminoacid position 631 (serin versus asparagin) is thought to confer antiviral activity towards influenza A viruses. With the help of the RCAS retroviral vector system these two different chMx isoforms were examined in vitro and in vivo for their antiviral activity towards various pathogenic influenza A viruses. Neither in vitro nor in vivo antiviral activity of the chMx isoforms was detectable. In contrast overexpression of murine Mx1 and human MxA in the same form led to protection of the chicken embryo fibroblast cultures against influenza A viruses. Stimulation of chicken embryo fibroblasts with type I interferon induced chMx mRNA and protein expression as well as an antiviral state of the cells. However a chMx knock down mediated by siRNA did not lead to the loss of the antiviral state mediated by type I interferon. In summary, the in vitro studies did not provide evidence for a role of chMx in the antiviral state induced by type I interferon

    Release kinetics of tumor necrosis factor-α and interleukin-1 receptor antagonist in the equine whole blood

    Get PDF
    Background: Horses are much predisposed and susceptible to excessive and acute inflammatory responses that cause the recruitment and stimulation of polymorphnuclear granulocytes (PMN) together with peripheral blood mononuclear cells (PBMC) and the release of cytokines. The aim of the study is to develop easy, quick, cheap and reproducible methods for measuring tumor necrosis factor alpha (TNF-α) and interleukin-1 receptor antagonist (IL-1Ra) in the equine whole blood cultures ex-vivo time- and concentration dependently. Results: Horse whole blood diluted to 10, 20 and 50 % was stimulated with lipopolysaccharide (LPS), PCPwL (a combination of phytohemagglutinin E, concanavalin A and pokeweed mitogen) or equine recombinant TNF-α (erTNF-α). TNF-α and IL-1Ra were analyzed in culture supernatants, which were collected at different time points using specific enzyme-linked immunosorbent assays (ELISA). Both cytokines could be detected optimal in stimulated 20 % whole blood cultures. TNF-α and IL-1Ra releases were time-dependent but the kinetic was different between them. PCPwL-induced TNF-α and IL-1Ra release was enhanced continuously over 24–48 h, respectively. Similarly, LPS-stimulated TNF-α was at maximum at time points between 8–12 h and started to decrease thereafter, whereas IL-1Ra peaked later between 12–24 h and rather continued to accumulate over 48 h. The equine recombinant TNF-α could induce also the IL-1Ra release. Conclusions: Our results demonstrate that similar to PCPwL, LPS stimulated TNF-α and IL-1Ra production time-dependently in whole blood cultures, suggesting the suitability of whole blood cultures to assess the release of a variety of cytokines in health and diseases of horse

    Applications of Gene Editing in Chickens: A New Era Is on the Horizon

    Get PDF
    The chicken represents a valuable model for research in the area of immunology, infectious diseases as well as developmental biology. Although it was the first livestock species to have its genome sequenced, there was no reverse genetic technology available to help understanding specific gene functions. Recently, homologous recombination was used to knockout the chicken immunoglobulin genes. Subsequent studies using immunoglobulin knockout birds helped to understand different aspects related to B cell development and antibody production. Furthermore, the latest advances in the field of genome editing including the CRISPR/Cas9 system allowed the introduction of site specific gene modifications in various animal species. Thus, it may provide a powerful tool for the generation of genetically modified chickens carrying resistance for certain pathogens. This was previously demonstrated by targeting the Trp38 region which was shown to be effective in the control of avian leukosis virus in chicken DF-1 cells. Herein we review the current and future prospects of gene editing and how it possibly contributes to the development of resistant chickens against infectious diseases

    A diverse repertoire of human immunoglobulin variable genes in a chicken B cell line is generated by both gene conversion and somatic hypermutation

    Get PDF
    Chicken immune responses to human proteins are often more robust than rodent responses because of the phylogenetic relationship between the different species. For discovery of a diverse panel of unique therapeutic antibody candidates, chickens therefore represent an attractive host for human-derived targets. Recent advances in monoclonal antibody technology, specifically new methods for the molecular cloning of antibody genes directly from primary B cells, has ushered in a new era of generating monoclonal antibodies from non-traditional host animals that were previously inaccessible through hybridoma technology. However, such monoclonals still require post-discovery humanization in order to be developed as therapeutics. To obviate the need for humanization, a modified strain of chickens could be engineered to express a human-sequence immunoglobulin variable region repertoire. Here, human variable genes introduced into the chicken immunoglobulin loci through gene targeting were evaluated for their ability to be recognized and diversified by the native chicken recombination machinery that is present in the B-lineage cell line DT40. After expansion in culture the DT40 population accumulated genetic mutants that were detected via deep sequencing. Bioinformatic analysis revealed that the human targeted constructs are performing as expected in the cell culture system, and provide a measure of confidence that they will be functional in transgenic animals

    Geometry-induced spin-filtering in photoemission maps from WTe2_2 surface states

    Full text link
    We demonstrate that an important quantum material WTe2_2 exhibits a new type of geometry-induced spin-filtering effect in photoemission, stemming from low symmetry that is responsible for its exotic transport properties. Through the laser-driven spin-polarized angle-resolved photoemission Fermi surface mapping, we showcase highly asymmetric spin textures of electrons photoemitted from the surface states of WTe2_2. Such asymmetries are not present in the initial state spin textures, which are bound by the time-reversal and crystal lattice mirror plane symmetries. The findings are reproduced qualitatively by theoretical modeling within the one-step model photoemission formalism. The effect could be understood within the free-electron final state model as an interference due to emission from different atomic sites. The observed effect is a manifestation of time-reversal symmetry breaking of the initial state in the photoemission process, and as such it cannot be eliminated, but only its magnitude influenced, by special experimental geometries.Comment: 5 pages, 3 figure

    Lernbedarf vs. LernbedĂĽrfnis: eine kritische Bestandsaufnahme zur Wirksamkeit von diagnostischen Online-Selbsttests

    Get PDF
    Um vorhandene Wissenslücken bestimmen zu können, stellen Online-Selbsttests ein geeignetes Instrument dar. In ihnen werden Soll-Anforderungen abgebildet und vorhandenes Ist-Wissen abgefragt. Durch diese mediale Unterstützung sind Lernbedarfe individuell bestimmbar, jedoch trägt sie nicht per se zur Förderung der Selbststeuerung im Lernprozess bei. Ziel dieses Beitrags ist es, Grenzen von diagnostischen Online-Selbsttests zu identifizieren und zugleich Potentiale für die Unterstützung der Reflexion im selbstgesteuerten Lernprozess aufzuzeigen. Anhand eines entwickelten Online-Selbsttests für Studierende zur eigenständigen Einschätzung ihrer Fähigkeiten und Kenntnisse im Bereich des methodisch-wissenschaftlichen Arbeitens, der hochschulweit zur Verfügung gestellt wurde, sowie parallel erhobener Metadaten erfolgt eine kritische Bestandsaufnahme zur Wirksamkeit von Online-Selbsttests. Die Ergebnisse dieses Beitrags tragen zur konzeptionellen Weiterentwicklung dieses Instrumentes bei

    Acquiring Resistance Against a Retroviral Infection via CRISPR/Cas9 Targeted Genome Editing in a Commercial Chicken Line

    Get PDF
    Genome editing technology provides new possibilities for animal breeding and aid in understanding host-pathogen interactions. In poultry, retroviruses display one of the most difficult pathogens to control by conventional strategies such as vaccinations. Avian leukosis virus subgroup J (ALV-J) is an oncogenic, immunosuppressive retrovirus that causes myeloid leukosis and other tumors in chickens. Severe economic losses caused by ALV-J remain an unsolved problem in many parts of the world due to inefficient eradication strategies and lack of effective vaccines. ALV-J attachment and entry are mediated through the specific receptor, chicken Na+/H+ exchanger type 1 (chNHE1). The non-conserved amino acid tryptophan 38 (W38) in chNHE1 is crucial for virus entry, making it a favorable target for the introduction of disease resistance. In this study, we obtained ALV-J-resistance in a commercial chicken line by precise deletion of chNHE1 W38, utilizing the CRISPR/Cas9-system in combination with homology directed repair. The genetic modification completely protected cells from infection with a subgroup J retrovirus. W38 deletion did neither have a negative effect on the development nor on the general health condition of the gene edited chickens. Overall, the generation of ALV-J-resistant birds by precise gene editing demonstrates the immense potential of this approach as an alternative disease control strategy in poultry

    Ramseyova teorie aneb příklady, které jsou pro počítač příliš složité

    Get PDF
    summary:Ramsey theory deals with problems asking for the minimum number of elements which guarantees a particular property. These include e.g. Party Problem, Happy End Problem or Van der Waerden Problem. Solving the problems of this kind is rather time-consuming for a computer, but the result can often be obtained by mathematical reasoning with pencil and paper. Ramsey theory was deeply developed by a famous Hungarian mathematician Pál Erdös

    A Genetically Engineered Commercial Chicken Line Is Resistant to Highly Pathogenic Avian Leukosis Virus Subgroup J

    Get PDF
    Viral diseases remain a major concern for animal health and global food production in modern agriculture. In chickens, avian leukosis virus subgroup J (ALV-J) represents an important pathogen that causes severe economic loss. Until now, no vaccine or antiviral drugs are available against ALV-J and strategies to combat this pathogen in commercial flocks are desperately needed. CRISPR/Cas9 targeted genome editing recently facilitated the generation of genetically modified chickens with a mutation of the chicken ALV-J receptor Na+/H+ exchanger type 1 (chNHE1). In this study, we provide evidence that this mutation protects a commercial chicken line (NHE1ΔW38) against the virulent ALV-J prototype strain HPRS-103. We demonstrate that replication of HPRS-103 is severely impaired in NHE1ΔW38 birds and that ALV-J-specific antigen is not detected in cloacal swabs at later time points. Consistently, infected NHE1ΔW38 chickens gained more weight compared to their non-transgenic counterparts (NHE1W38). Histopathology revealed that NHE1W38 chickens developed ALV-J typical pathology in various organs, while no pathological lesions were detected in NHE1ΔW38 chickens. Taken together, our data revealed that this mutation can render a commercial chicken line resistant to highly pathogenic ALV-J infection, which could aid in fighting this pathogen and improve animal health in the field
    • …
    corecore