749 research outputs found

    Compendium for precise ac measurements of the quantum Hall resistance

    Full text link
    In view of the progress achieved in the field of the ac quantum Hall effect, the Working Group of the Comite Consultatif d'Electricite et Magnetisme (CCEM) on the AC Quantum Hall Effect asked the authors of this paper to write a compendium which integrates their experiences with ac measurements of the quantum Hall resistance. In addition to the important early work performed at the Bureau International des Poids et Mesures and the National Physical Laboratory, UK, further experience has been gained during a collaboration of the authors' institutes NRC, METAS, and PTB, and excellent agreement between the results of different national metrology institutes has been achieved. This compendium summarizes the present state of the authors' knowledge and reviews the experiences, tests and precautions that the authors have employed to achieve accurate measurements of the ac quantum Hall effect. This work shows how the ac quantum Hall effect can be reliably used as a quantum standard of ac resistance having a relative uncertainty of a few parts in 10^8.Comment: 26 pages, 8 figure

    Twist and writhe dynamics of stiff filaments

    Full text link
    This letter considers the dynamics of a stiff filament, in particular the coupling of twist and bend via writhe. The time dependence of the writhe of a filament is Wr2∌Lt1/4W_r^2\sim L t^{1/4} for a linear filament and Wr2∌t1/2/LW_r^2\sim t^{1/2} / L for a curved filament. Simulations are used to study the relative importance of crankshaft motion and tube like motion in twist dynamics. Fuller's theorem, and its relation with the Berry phase, is reconsidered for open filamentsComment: 7 Pages with 2 figure

    Expression of adhesion molecules and cytokines after coronary artery bypass grafting during normothermic and hypothermic cardiac arrest

    Get PDF
    Objective: Cardiac surgery with cardiopulmonary bypass (CPB) results in vascular injury and tissue damage which involves leukocyte-endothelial interactions mediated by cytokines and adhesion molecules. This study was designed to demonstrate the effect of normothermic and hypothermic CPB to cytokine and soluble adhesion molecule levels in adults and to determine whether these levels correlate to the patients postoperative course. Design and patients: In 25 patients after normothermic and in 25 patients after hypothermic coronary artery bypass grafting with cardiopulmonary bypass (CPB), blood samples for cytokine and soluble adhesion molecule analysis were taken preoperatively, 24, 36, 48 h, and 6 days postoperatively. Soluble adhesion molecules (sE-selectin, sICAM-1) were measured by ELISA and cytokines (TNF-α, IL-6, IL-8) by chemilumenscent-immunoassay. Clinical data were collected prospectively. Results: Postoperatively, adhesion molecule and cytokine levels were significantly elevated after CPB. Mean plasma levels of sICAM-1 was 2.4-fold higher after 6 days. Mean plasma concentration of sE-selectin peaked after 48 h with a 2-fold increase compared to normothermic conditions. In the hypothermia group sICAM-1, sE-selectin, IL-6, and IL-8 showed significantly higher levels (Pâ‰Ș0.0057, Pâ‰Ș0.0012, Pâ‰Ș0.0419, Pâ‰Ș0.0145) after 24 h compared to the normothermia group. No clinical differences were seen. Conclusion: Adhesion molecules and cytokines are elevated after CPB. Patients after hypothermic CPB show significant higher sICAM-1, sE-selectin, IL-6, and IL-8 levels after 24 h compared to normothermic conditions. These results are mainly due to longer CPB and crossclamp times but do not alter the patient's postoperative cours

    The crust in the pamir: Insights from receiver functions

    Get PDF
    The Cenozoic convergence between India and Asia has created Earth's thickest crust in the Pamir‐Tibet Plateau by extreme crustal shortening. Here we study the crustal structure of the Pamir and western Tian Shan, the adjacent margins of the Tajik, Tarim, and Ferghana Basins, and the Hindu Kush, using data collected by temporary seismic experiments. We derive, compare, and combine independent observations from P and S receiver functions. The obtained Moho depth varies from ~40 km below the basins to a double‐normal thickness of 65–75 km underneath the Pamir and Hindu Kush. A Moho doublet—with the deeper interface down to a depth of ~90 km—coincides with the arc of intermediate‐depth seismicity underneath the Pamir, where Asian continental lower crust delaminates and rolls back. The crust beneath most of the Central and South Pamir has a low Vp/Vs ratio (<1.70), suggesting a dominantly felsic composition, probably a result of delamination/foundering of the mafic rocks of the lower crust. Beneath the Cenozoic gneiss domes of the Central and South Pamir, which represent extensional core complexes, the Vp/Vs ratios are moderate to high (~1.75), consistent with the previously observed, midcrustal low‐velocity zones, implying the presence of crustal partial melts. Even higher crustal average Vp/Vs ratios up to 1.90 are found in the sedimentary basins and along the Main Pamir Thrust. The ratios along the latter—the active thrust front of the Pamir—may reflect fluid accumulations within a strongly fractured fault system

    Genetic Background and Climatic Droplet Keratopathy Incidence in a Mapuche Population From Argentina

    Get PDF
    Purpose To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. Methods To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. Results This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. Conclusions These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK

    Analysis and modelling of tsunami-induced tilt for the 2007, M = 7.6, Tocopilla and the 2010, M = 8.8 Maule earthquakes, Chile, from long-base tiltmeter and broadband seismometer records

    Get PDF
    We present a detailed study of tsunami-induced tilt at in-land sites, to test the interest and feasibility of such analysis for tsunami detection and modelling. We studied tiltmeter and broadband seismometer records of northern Chile, detecting a clear s

    The Viscous Nonlinear Dynamics of Twist and Writhe

    Get PDF
    Exploiting the "natural" frame of space curves, we formulate an intrinsic dynamics of twisted elastic filaments in viscous fluids. A pair of coupled nonlinear equations describing the temporal evolution of the filament's complex curvature and twist density embodies the dynamic interplay of twist and writhe. These are used to illustrate a novel nonlinear phenomenon: ``geometric untwisting" of open filaments, whereby twisting strains relax through a transient writhing instability without performing axial rotation. This may explain certain experimentally observed motions of fibers of the bacterium B. subtilis [N.H. Mendelson, et al., J. Bacteriol. 177, 7060 (1995)].Comment: 9 pages, 4 figure

    Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges

    Full text link
    A new traceability chain for the derivation of the farad from dc quantum Hall effect has been implemented at INRIM. Main components of the chain are two new coaxial transformer bridges: a resistance ratio bridge, and a quadrature bridge, both operating at 1541 Hz. The bridges are energized and controlled with a polyphase direct-digital-synthesizer, which permits to achieve both main and auxiliary equilibria in an automated way; the bridges and do not include any variable inductive divider or variable impedance box. The relative uncertainty in the realization of the farad, at the level of 1000 pF, is estimated to be 64E-9. A first verification of the realization is given by a comparison with the maintained national capacitance standard, where an agreement between measurements within their relative combined uncertainty of 420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table

    Influence of solvent granularity on the effective interaction between charged colloidal suspensions

    Full text link
    We study the effect of solvent granularity on the effective force between two charged colloidal particles by computer simulations of the primitive model of strongly asymmetric electrolytes with an explicitly added hard sphere solvent. Apart from molecular oscillating forces for nearly touching colloids which arise from solvent and counterion layering, the counterions are attracted towards the colloidal surfaces by solvent depletion providing a simple statistical description of hydration. This, in turn, has an important influence on the effective forces for larger distances which are considerably reduced as compared to the prediction based on the primitive model. When these forces are repulsive, the long-distance behaviour can be described by an effective Yukawa pair potential with a solvent-renormalized charge. As a function of colloidal volume fraction and added salt concentration, this solvent-renormalized charge behaves qualitatively similar to that obtained via the Poisson-Boltzmann cell model but there are quantitative differences. For divalent counterions and nano-sized colloids, on the other hand, the hydration may lead to overscreened colloids with mutual attraction while the primitive model yields repulsive forces. All these new effects can be accounted for through a solvent-averaged primitive model (SPM) which is obtained from the full model by integrating out the solvent degrees of freedom. The SPM was used to access larger colloidal particles without simulating the solvent explicitly.Comment: 14 pages, 16 craphic
    • 

    corecore