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Genetic Background and Climatic Droplet Keratopathy Incidence in a
Mapuche Population From Argentina

Abstract

Purpose
To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired,
often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who
exhibit the disorder.

Methods
To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native
Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-
chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient)
population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages
that were present in the two study groups.

Results
This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50%
of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There
was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control
groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between
these two groups, there was no statistically significant relationship between individual paternal genetic
backgrounds and the incidence or stage of disease.

Conclusions
These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems
and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in
CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis
of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise
role that mitochondria play in the expression of CDK.
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Abstract

Purpose: To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an
acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who
exhibit the disorder.
Methods: To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in
native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-
chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population,
while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present
in the two study groups.
Results: This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas
50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was
no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups.
Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups,
there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence
or stage of disease.
Conclusions: These results indicate a lack of correlation between genetic ancestry as represented by haploid
genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a
role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis
of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that
mitochondria play in the expression of CDK.
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Introduction

Climatic droplet keratopathy (CDK) is an acquired, generally
bilateral degenerative disease of the cornea characterized by
its slowly progressive opacity, affecting predominantly males
over 40 years old [1]. A clinically well-defined entity, CDK is
characterized by the progressively hazy appearance of the
cornea caused by the opalescence of its most anterior layers. It
progresses through three stages of increasing severity [2,3]. In
Grade 1 of CDK, multiple and tightly confluent small,
translucent subepithelial droplet-like deposits are observed in

the peripheral cornea, close to the temporal and/or nasal
limbus, leaving a prelimbal fringe of apparently normal cornea.
At this initial stage, where these peripheral microdroplets are
best seen biomicroscopically with back-scattered slit-
illumination and high magnification, no compromise of visual
acuity occurs. In Grade 2, this haziness extends over the
central cornea in a horizontal band-shaped distribution, giving a
tarnished appearance of the inferior two thirds of the cornea,
blurring the details of the iris under the diseased areas. By this
stage, visual acuity of the affected eye may be severely
compromised. In Grade 3, clusters of confluent yellow and
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amber-like subepithelial droplets of different sizes are observed
distributed throughout areas of microdroplet opalescence [2,3].

Cornea’s hypoesthesia has been observed in many CDK
patients, being more severe in advanced stages of the disease
[4]. This decrease of corneal sensitivity may lead to severe
trophic changes that predispose to ulceration, spontaneous
perforation and eye’s atrophy and irreversible blindness.
Sequels of corneal perforations were more common in patients
with CDK than in controls of similar age [5]. Occurrences of
severe corneal ulcers complicated by bacterial infection, and
their torpid evolution to perforation and endophthalmitis have
also been reported in CDK [6,7].

In histopathological light microscope examination, globular
deposits of different sizes may be observed under the corneal
epithelium, within Bowman’s membrane and the anterior
stroma. The coalescence and increased volume of these
spherules or deposits may cause disruption of Bowman’s
membrane and elevation and thinning of the corneal epithelium
[1,8,9,10]. Electron microscopy has shown that globules are
round, electron-dense and sharply demarcated structures,
always surrounded by basement membrane material, and
adjacent disorganized collagen fibrils [1,9]. The droplets
generally lack positive staining for fat or calcium [1]. Although
the exact nature and composition of droplets remain unclear,
proteinaceous constituents have been found [8,9,10,11].

More recently, Kaji et al. [12] found immunoreactivity against
advanced glycation end products (AGE) in cornea of CDK
patients when compared with normal cornea and other corneal
diseases such as bullous keratopathy or band keratopathy.
This finding led them to postulate that pathogenesis of CDK
might be an aggregation of AGE-modified proteins as the
consequence of aging and ultraviolet radiation (UVR)
exposure.

Using glycopeptide capture and iTRAQ, we sampled tears
from CDK patients and controls, and identified a total of 43
unique N-glycoproteins, 19 of which have not previously been
reported in tear fluid. The quantitative study in patients’ tears
showed increased levels of four N-glycosylated proteins,
including haptoglobin, polymeric immunoglobulin receptor,
immunoglobulin J chain and an uncharacterized protein
DKFZp686M08189, as well as a decrease in the N
glycosylation level of lacritin [13]. More recently, we identified
approximately 105 proteins in droplets of CDK specimens
using proteomic analysis, a subset of them being confirmed by
immunohistochemistry [14]. The most frequent pathway for
which the proteins have been identified were cell junction, focal
adhesion and regulation of cytoskeleton, in addition to energy
metabolism associated proteins, suggesting that several of
them could play a role in fibril or deposit formation [14].

CDK may be observed in an otherwise healthy eye.
However, pinguecula, pterigum, cataract and pseudo
exfoliation have been frequently observed among patients with
CDK [3,15]. More recently, iris atrophy has also been noted in
CDK patients [4].

Although the etiology of CDK is unknown, it is considered a
multifactorial disease related to environmental factors. Intense
constant winds, lack of shade, low humidity and UVR exposure
in hot as well as cold arid climates are the more common

environmental factors observed in areas with high prevalence
of the disease. For these reasons, CDK is considered a rural
and an outdoor labor disease, and very rarely affects urban
individuals [3,4,16,17,18,19,20]. In fact, this disease occurs
frequently in indigenous populations of the Americas that
inhabit these kinds of environments [1,3,4,16,21,22]. Since
CDK affects predominantly individuals in remote and
impoverished marginal rural areas, identifying risk factors more
accurately may give insights into ways to prevent it.

These observations suggested that susceptibility to CDK
could be influenced by the genetic background of the
individuals who exhibit the disease, in particular, that of Native
Americans. For example, certain mtDNA-based eye diseases
such as Leber’s Hereditary Optic Neuropathy (LHON) have
exhibited population-based effects. This disorder has been
observed more frequently in haplogroup J in Caucasian and
Slavic populations than in other maternal lineages present in
these populations [23,24,25,26], whereas it appears in East
Eurasian lineages such as D that are more common in East
Asian populations [27,28]. Likewise, the sequence composition
of the mtDNA genome affects the expression of retinitis
pigmentosa in adult onset neuropathy, ataxia and retinitis
pigmentosa (NARP) cases caused by the T8993G ATPase 6
mutation [29]. Based on these data, there could be similar
population genetic effects on the type and incidence of eye
diseases that occur in Native Americans, such as CDK.

Another reason we suspected the involvement of
mitochondria in CDK is their established role in other corneal
diseases. For example, although corneal clouding occurs
infrequently in infants and children, it is often associated with
mucopolysaccharidoses or Fabry disease when it appears in
these young individuals. Some of those cases have also
exhibited abnormal mitochondria in muscle biopsies analyzed
under light and electron microscopy, implying significant
mitochondrial dysfunction [30]. Similarly, previous work on
keratocornus (KC), a noninflammatory thinning disorder usually
involving the central or inferior cornea, revealed that KC
corneas exhibited more mtDNA damage than did normal
corneas [31], suggesting that increased oxidative stress and
compromised mtDNA integrity may be involved in KC
pathogenesis [32]. Likewise, in certain cases of chronic
progressive external ophthalmoplegia (CPEO), a mtDNA-based
genetic disorder characterized by progressive ocular
dysmotility, eyelid ptosis, optic atrophy and retinal pigmentary
changes, bilateral segmental corneal oedema also occurs [33].
This kind of corneal damage has also been noted in other
mtDNA based diseases such as Kearns–Sayre syndrome and
ophthalmoplegia-plus [34]. Moreover, the autosomal dominant
eye disease Schnyder corneal dystrophy (SCD), in which the
abnormal deposition of cholesterol and phospholipids in the
cornea results in progressive corneal opacification and visual
loss, was linked to mutations in the UB1AD1 gene, which has
been co-localized with a subunit of NADH dehydrogenase, a
key complex I OXPHOS enzyme in mitochondria [35]. Thus,
mitochondrial bioenergetics clearly plays a significant role in a
variety of ophthalmological diseases, including those
preferentially affecting the cornea.

Genetic Background in Climatic Droplet Keratopathy
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In an initial effort to investigate the influence of genetic
ancestry on the expression of CDK in indigenous populations
of the Americas, and to begin exploring the possible role of
mitochondrial bioenergetics in CDK expression, we examined
mtDNA variation in 56 persons of Mapuche descent from the
northwest area of Patagonia in Argentina. These individuals
represented both CDK cases and controls. In addition, to
assess the possible influence of non-native admixture on the
incidence of CDK, we characterized Y-chromosome variation in
males from the CDK and control populations. Through this
analysis, we were able to characterize the maternal and
paternal haplogroup diversity in these individuals, and assess
the relationship between their genetic ancestry and disease
status.

Subjects and Methods

Subjects
The participants in this study were mostly persons of

Mapuche descent living in settlements and villages located at
40° S in the northwest Argentine Patagonia (Province of Rio
Negro). Based on the clinical assessment of CDK, individuals
were asked to participate in this study. In addition, persons not
exhibiting signs of CDK but who were of similar age, sex and
ethnic ancestry were also asked to participate and serve as
controls for the CDK-positive individuals. CDK patients and
controls did not have any other eye diseases, such as dry eye
syndrome or rheumatoid arthritis, and were not on systemic
medications at the time of this study. Together, they comprised
a total of 56 individuals. Because this disease preferentially
affects men, most of the participants were adult males.

Ophthalmological examination and sample collection
Field research and sample collection were undertaken in this

northwest Patagonia region in Argentina. The Argentine team
conducted a complete eye examination as previously described
[4], administered necessary health assistance, and took blood
samples from persons living in communities within the region
for genetic analyses, all under informed consent. In addition to
providing all study participants with medical care and eye
examinations, we also gathered demographic and genealogical
information from them to obtain a better understanding of their
genetic ancestry.

The protocol used in this work and written informed consent
were approved by the Institutional Review Board of the
Catholic University of Cordoba, the Institutional Committee of
Ethics in Health Research, Ministry of Health of the Province of
Cordoba, Argentina, and the Institutional Review Board #8 of
the University of Pennsylvania. The study was conducted in
accordance with the tenets of the Declaration of Helsinki. All
participants provide their written informed consent to participate
in this study.

Molecular Genetic Methods
Mitochondrial DNA Analysis.  The DNA samples were

examined for mtDNA sequence variation through single
nucleotide polymorphisms (SNP) analysis. The SNP analysis

involved screening the samples for markers forming the basal
portion of the mtDNA phylogeny (M, N, and R) and the
diagnostic markers of East Eurasian (A-D) [36,37,38]
haplogroups (maternal lineages) known to be present in Native
American populations and haplogroups common in European
groups [39,40]. The basal SNPs were assessed using custom
TaqMan® assays (Applied Biosystems, Bedford, MA, USA) and
run on an ABI 7900HT Fast Real-Time PCR System. All other
SNPs (A-D, X) were detected through PCR-RFLP analysis
[41,42]. The SNP data were used to assign a haplogroup to
each mtDNA. We also sequenced the entire mtDNA control
region to ascertain individual haplotypes, using published
methods [43,44,45].

Y-chromosome Analysis.  Y-chromosome analysis utilized
the informative SNPs identified in previous studies of world
populations to characterize paternal haplotypes. The SNPs
examined include M3, M9, M20, M45, M69, M89, M168, M170
and M201 [46,47,48], M242 [49,50], LLY22g [51], and M304
[52]. They were detected through Taq Man assays with
fluorescent primers using the ABI 7900HT Fast Real-Time PCR
System. Five markers (M60, M91, M139, M175 and M186) [48]
were detected using a multiplex reaction, and read on the ABI
3130XL Gene Analyzer, using GeneMapper software. Paternal
haplotypes were defined through the analysis of STR variation,
using the ABI AmpFℓSTR® Y-Filer kit, following published
methods [43,44,45].

Results

We evaluated the results of the genetic analysis of the CDK
and control samples in the context of the genealogical data
from participants. This process allowed us to remove certain
individuals from the statistical analysis because of
consanguinity. For example, we noted that two control
individuals were maternally related, and excluded one from
further analysis. In addition, several other persons were
maternally related, with three of them being controls and the
other a CDK patient. We decided to keep one of the controls
and the related CDK patient in the analysis, but included no
other relatives in the statistical analysis. In addition, two of
these individuals were paternally related, and, thus, one was
excluded from the NRY analysis. All other individuals appeared
to represent distinct lineages within the CDK and control
groups. This evaluation reduced the CDK and control groups to
29 and 24 individuals, respectively for the mtDNA analysis, and
for the NRY analysis, 26 and 18, respectively.

mtDNA Results
In general, the mtDNA diversity observed in the Mapuche

CDK patient and control samples were typical of those already
described in South American populations [36,53,54,55,56].
With few exceptions, these individuals had mtDNAs from
haplogroups commonly seen in Native Americans (Table 1).
The majority of these mtDNAs belonged to haplogroup D
(48%), with slightly over half of these haplotypes appearing in
CDK patients. Haplogroup B was the next most frequent
haplogroup, and appeared at a greater frequency (28%) than
has been described previously in Mapuche groups [53,54].

Genetic Background in Climatic Droplet Keratopathy
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Again, more than half of the B haplotypes appeared in CDK
patients. Likewise, haplogroup C was nearly as common as
haplogroup B in this population (23%), and occurred at a higher
frequency than observed in other Mapuche groups [53,54].
However, only 5 of 12 haplogroup C individuals were CDK
patients. Haplogroups A, K, and X were represented by single
individuals, with the only CDK patient belonging to haplogroup
K.

Based on a Fisher’s Exact test (p = 0.705), there was no
significant difference in the frequencies of mtDNA haplogroups
between the CDK patient and control samples. In other words,
there appeared to be no association between the incidence of
CDK and the presence of an indigenous mtDNA haplogroup.

Y-chromosome Results
Roughly half of the 44 Y-chromosomes belonged to

haplogroup Q1a3a, which is commonly found throughout the
Americas [50,57,58,59,60,61] (Table 2). The remaining Y-
chromosomes belonged to haplogroups I, J, K and R. With the
exception of haplogroup K, these paternal haplotypes are
typically found in European populations [46,47,48], and, as
such, can be considered the result of intermarriage between
members of indigenous and colonizing populations. Most of the
CDK patients had either haplogroup Q1a3a or R haplotypes,
while the control individuals had a significantly higher
frequency of non-indigenous Y-chromosome haplotypes than
the patient group.

Table 1. mtDNA haplogroup frequencies of Mapuche CDK
patients and controls.

Haplogroup * CDK Control
A 0 (0.000) 1 (0.042)
B 9 (0.310) 6 (0.250)
C 5 (0.172) 7 (0.292)
D 14 (0.483) 9 (0.375)
K 1 (0.034) 0 (0.000)
X 0 (0.000) 1 (0.042)
Total 29 24

(*) Haplogroups classified as indigenous (A, B, C, D) or non-indigenous (K, X) in
origin.

Table 2. Y-chromosome haplogroup frequencies of
Mapuche CDK patients and controls.

Haplogroup * CDK Controls
I 1 (0.039) 2 (0.111)
J 1 (0.039) 0 (0.000)
K (x L, M1, NO, P) 0 (0.000) 3 (0.167)
Q1a3 1 (0.039) 0 (0.000)
Q1a3a 14 (0.539) 7 (0.389)
R 9 (0.346) 6 (0.333)
Total 26 18

(*) Haplogroups classified as indigenous (Q1a3, Q1a3a) or non-indigenous (I, J, K,
R) in origin.

However, when statistically tested, these haplogroup
differences were not significantly different (χ2 = 6.606, p
=0.158). Similarly, there was no statistically significant
relationship between an individual’s paternal genetic
background and the incidence or stage of the disease (χ2 =
1.504, p = 0.220).

Discussion

In this analysis, we investigated the relationship between the
genetic background of CDK patient and control individuals of
Mapuche descent and their disease status. In spite of the fact
that the mtDNA plays a role in different kinds of eye diseases,
there was no clear correlation between any particular maternal
haplogroup and CDK status. Both CDK patients and controls
had similar frequencies of the mtDNA lineages typically seen in
Native American populations. In fact, we noted that, among the
four individuals who were maternally related (a brother and
sister and her two sons), only one of them had CDK. Thus, on
this basis, CDK seems to be more strongly linked to
environmental exposures, and not directly related to energetic
deficiencies due to mtDNA mutations, as seen in LHON. On
the other hand, given that the brother was the person with
CDK, it is possible that his two nephews had not had sufficient
time or exposure to develop the disease yet.

In addition, the difference in Y-chromosome haplogroup
frequencies between the CDK and patient groups was
intriguing. The degree of admixture in the control group, as
measured by the presence of West Eurasian haplogroups, was
considerably higher than in the CDK group, suggesting a
potential paternal influence on disease status. Interestingly,
previous work revealed similar results with the ABO system,
with 64.5% of CDK patients and 44.8% of the controls being
O/Rh+, respectively (Serra et al., unpublished data). However,
as shown above, there was no statistically significant
relationship between an individual’s paternal genetic
background and the incidence or stage of the disease.

Therefore, these results indicate a lack of correlation
between genetic ancestry as represented by these haploid
genetic systems and the incidence of CDK in Mapuche
populations.

In addition, the mtDNA appears plays less of a role in CDK
expression than in complex diseases involving bioenergetic
processes or other mitochondrial diseases affecting the eye.
However, it should be noted that we have not yet examined the
full mtDNA genome sequences of the CDK and control groups
for putative pathogenic mutations, nor assessed the extent of
DNA damage in corneal tissue obtained from transplant
patients. Nevertheless, should there be genetic influence on
the expression of CDK, our results point to nuclear genes being
involved in disease etiology. The genetic loci possibly involved
in the disease could include those involved in cell junction,
focal adhesion and regulation of cytoskeleton, as indicated by
recent proteomics work [14], those involved in corneal
physiology, such as ALDH3A1 [62], or perhaps the UB1AD1
gene described above [34].

From a demographic point of view, it could be possible that
we had an insufficient sample size to fully assess the

Genetic Background in Climatic Droplet Keratopathy
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association between genetic markers and CDK incidence. In
this regard, our research group has been conducting
ophthalmologic studies in individuals living in a vast, remote
Patagonia region of Argentina (11,281 km2) for over eight
years. Since the total population of this region is 2,329
inhabitants, giving a population density of 0.2 inhabitants per
km2, the estimated size of the study sample should be 71
individuals. In this regard, we examined 758 individuals and
found that 73 of them (9.6%) had CDK (85% male and 15%
female). Upon deciding to investigate whether the incidence of
and susceptibility to CDK was influenced by the genetic
background of the individuals who exhibited the disorder, many
of the patients had died, while others did not show up for
examination and some decided not to participate in the study.
For these reasons, we worked with as many CDK patients as
were available and investigated a similar number of individuals
without the disease who were randomly selected from the

whole group. The data reported from the 56 participants
therefore reflect the constraints of conducting population and
medical genetics research with indigenous communities living
in a vast and remote region of the country.
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