201 research outputs found

    The generality/specificity of expertise in scientific reasoning

    Get PDF

    Natural language processing techniques for researching and improving peer feedback

    Get PDF
    Peer review has been viewed as a promising solution for improving studennts' writing, which still remains a great challenge for educators. However, one core problem with peer review of writing is that potentially useful feedbback from peers is not always presented in ways that lead to revision. Our prior investigations found that whether students implement feedback is significantly correlated with two feedback features: localization information and concrete solutions. But focusing on feedback features is time-intensive for researchers and instructors. We apply data mining and Natural Languagee Processing techniques to automatically code reviews for these feedback features. Our results show that it is feasible to provide intelligent suppport to peer review systems to automatically assess students' reviewing performance with respect to problem localization and solution. We also show that similar research conclusions about helpfulness perceptions of feedback across students and different expert types can be drawn from automatically coded data and from hand-coded data. © Earli

    Science Classroom Inquiry (SCI) simulations: A novel method to scaffold science learning

    Get PDF
    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study

    The importance of frameworks for directing empirical questions: Reply to Goodie and Fantino (2000).

    Get PDF

    Emergent Systems Energy Laws for Predicting Myosin Ensemble Processivity

    Get PDF
    In complex systems with stochastic components, systems laws often emerge that describe higher level behavior regardless of lower level component configurations. In this paper, emergent laws for describing mechanochemical systems are investigated for processive myosin-actin motility systems. On the basis of prior experimental evidence that longer processive lifetimes are enabled by larger myosin ensembles, it is hypothesized that emergent scaling laws could coincide with myosin-actin contact probability or system energy consumption. Because processivity is difficult to predict analytically and measure experimentally, agent-based computational techniques are developed to simulate processive myosin ensembles and produce novel processive lifetime measurements. It is demonstrated that only systems energy relationships hold regardless of isoform configurations or ensemble size, and a unified expression for predicting processive lifetime is revealed. The finding of such laws provides insight for how patterns emerge in stochastic mechanochemical systems, while also informing understanding and engineering of complex biological systems

    Postpyloric enteral nutrition in the critically ill child with shock: a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tolerance to enteral nutrition in the critically ill child with shock has not been studied. The purpose of the study was to analyze the characteristics of enteral nutrition and its tolerance in the critically ill child with shock and to compare this with non-shocked patients.</p> <p>Methods</p> <p>A prospective, observational study was performed including critically ill children with shock who received postpyloric enteral nutrition (PEN). The type of nutrition used, its duration, tolerance, and gastrointestinal complications were assessed. The 65 children with shock who received PEN were compared with 461 non-shocked critically ill children who received PEN.</p> <p>Results</p> <p>Sixty-five critically ill children with shock, aged between 21 days and 22 years, received PEN. 75.4% of patients with shock received PEN exclusively. The mean duration of the PEN was 25.2 days and the maximum calorie intake was 79.4 kcal/kg/day. Twenty patients with shock (30.7%) presented gastrointestinal complications, 10 (15.4%) abdominal distension and/or excessive gastric residue, 13 (20%) diarrhoea, 1 necrotising enterocolitis, and 1 duodenal perforation due to the postpyloric tube. The frequency of gastrointestinal complications was significantly higher than in the other 461 critically ill children (9.1%). PEN was suspended due to gastrointestinal complications in 6 patients with shock (9.2%). There were 18 deaths among the patients with shock and PEN (27.7%). In only one patient was the death related to complications of the nutrition.</p> <p>Conclusion</p> <p>Although most critically ill children with shock can tolerate postpyloric enteral nutrition, the incidence of gastrointestinal complications is higher in this group of patients than in other critically ill children.</p

    Understanding the agreements and controversies surrounding childhood psychopharmacology

    Get PDF
    The number of children in the US taking prescription drugs for emotional and behavioral disturbances is growing dramatically. This growth in the use of psychotropic drugs in pediatric populations has given rise to multiple controversies, ranging from concerns over off-label use and long-term safety to debates about the societal value and cultural meaning of pharmacological treatment of childhood behavioral and emotional disorders. This commentary summarizes the authors' eight main findings from the first of five workshops that seek to understand and produce descriptions of these controversies. The workshop series is convened by The Hastings Center, a bioethics research institute located in Garrison, New York, U.S.A

    Priming Analogical Reasoning with False Memories

    Get PDF
    Like true memories, false memories are capable of priming answers to insight-based problems. Recent research has attempted to extend this paradigm to more advanced problem-solving tasks, including those involving verbal analogical reasoning. However, these experiments are constrained inasmuch as problem solutions could be generated via spreading activation mechanisms (much like false memories themselves) rather than using complex reasoning processes. In three experiments we examined false memory priming of complex analogical reasoning tasks in the absence of simple semantic associations. In Experiment 1, we demonstrated the robustness of false memory priming in analogical reasoning when backward associative strength among the problem terms was eliminated. In Experiments 2a and 2b, we extended these findings by demonstrating priming on newly created homonym analogies that can only be solved by inhibiting semantic associations within the analogy. Overall, the findings of the present experiments provide evidence that the efficacy of false memory priming extends to complex analogical reasoning problems
    corecore