19 research outputs found

    Comparative efficacy of oral administrated afoxolaner (NexGard™) and fluralaner (Bravecto™) with topically applied permethrin/imidacloprid (Advantix®) against transmission of Ehrlichia canis by infected Rhipicephalus sanguineus ticks to dogs

    Get PDF
    BACKGROUND : The ability of the topical spot-on Advantix® (50 % permethrin/10 % imidacloprid) to prevent transmission of Ehrlichia canis by infected Rhipicephalus sanguineus ticks to dogs has previously been reported. The recent market introduction of chewable tablets containing the novel compounds, afoxolaner (NexGard™) and fluralaner (Bravecto™) enabled us to conduct a comparative efficacy study with respect to the ability of these three products to block transmission of E. canis by ticks to dogs. The speed of kill, immediate drop-off rate and anti-attachment efficacy of the respective products were also studied. METHODS : The study was a blinded parallel group design, wherein 32 dogs were randomised into four different groups of eight dogs. Group 1 served as negative placebo control, group 2 and 3 were treated on Days 0, 28 and 56 with NexGard™ and Advantix®, respectively. Group 4 was dosed once on Day 0 with Bravecto™. For tick efficacy assessments 50 non-infected ticks were placed onto the dogs on Days 30, 35, 42, 49, 56, 63, 70, 77 and 84 and on animal tick counts were performed at 3 h, 6 h and 12 h after infestation. To evaluate the ability to block transmission of E. canis, each dog was challenged by releasing 80 adult E. canis-infected R. sanguineus ticks into their sleeping kennels on Days 31, 38, 45 and 52. The animals were monitored for clinical signs of monocytic ehrlichiosis (pyrexia and thrombocytopenia) and were tested for E. canis DNA by PCR and for specific antibodies using IFA. A dog was considered infected with E. canis if both PCR and IFA yielded positive test results up to Day 84. RESULTS : Mean arithmetic tick counts on dogs treated with the Advantix® spot-on were significantly (P < 0.0005) lower throughout the study as compared with the negative controls and was, with respect to the speed of kill and resulting onset of acaricidal efficacy, superior over NexGard™ and Bravecto™ at all time points in the 12 h period observed (3 h, 6 h and 12 h). None of the dogs treated with the Advantix® spot-on became infected with E. canis, whereas six out of eight untreated control dogs acquired the infection. Furthermore, E. canis infection was diagnosed in four out of eight dogs treated with NexGard™ and in two out of eight dogs treated with Bravecto™. CONCLUSIONS : The speed of kill of the two recently registered systemic compounds against R. sanguineus was not sufficiently fast to prevent transmission of E. canis and resulted in only low partial blocking and protection capacity while Advantix® effectively blocked transmission of E. canis to dogs in the challenge period and thus provided adequate protection for dogs against monocytic ehrlichiosis.Bayer Animal Health GmbH, Monheim, Germanyhttp://www.parasitesandvectors.comam2016Veterinary Tropical Disease

    Deroceras panormitanum and congeners from Malta and Sicily, with a redescription of the widespread pest slug as Deroceras invadens n. sp.

    No full text
    The name Deroceras panormitanum is generally applied to a terrestrial slug that has spread worldwide and can be a pest; earlier this tramp species had been called Deroceras caruanae. Neither name is appropriate. The taxonomic descriptions apply to a species from Sicily and Malta. This true D. panormitanum and the tramp species are distinct in morphology and mating behaviour. For instance, the penial caecum of D. panormitanum is more pointed, everting faster at copulation. The size of the penial lobe varies considerably in preserved specimens but is always prominent at copulation. D. panormitanum is distinct from the Maltese endemic Deroceras golcheri, but a phylogeny based on mtDNA COI sequences implies that they are more closely related than is the tramp species. D. golcheri has a still closer counterpart on Sicily, but we leave the taxonomy of this species X unresolved. In interspecific crosses, D. panormitanum may transfer sperm to the partner's sarcobelum whereas the partner fails to evert its penis (D. golcheri) or to transfer sperm (the tramp species). Names previously applied to the tramp species originally referred to D. panormitanum or are otherwise invalid, so it is here formally redescribed as D. invadens. Deroceras giustianum Wiktor, 1998 is synonymised with D. panormitanum

    Comparative speed of kill, repellent (anti-feeding) and acaricidal efficacy of an Imidacloprid/flumethrin collar (Seresto®) and a fipronil/(S)-methoprene/eprinomectin/praziquantel spot-on (Broadline®) against Ixodes ricinus (Linné, 1758) on cats

    Get PDF
    Speed of kill, repellent (anti-feeding) and acaricidal efficacy of an imidacloprid 10% (w/w) /flumethrin 4.5% (w/w) collar (Seresto®, Bayer) and a spot-on formulation of fipronil 8.3% (w/v) /(S)-methoprene 10% (w/v) /eprinomectin 0.4% (w/v) /praziquantel 8.3% (w/v) (Broadline®, Merial) against artificially-induced infestations with Ixodes ricinus on cats, were assessed in a parallel group design, randomized, controlled study. Twenty-four cats were included and randomly allocated to treatment groups or non-treated controls. Starting on Day (D) 7 after treatment until D28, cats were each infested with 50 I. ricinus at weekly intervals. Ticks were counted in situ on the cats at 6, 12 and 24 h and upon removal 48 h after each infestation. Based on arithmetic means, Seresto® proved to be 100% effective against adult I. ricinus at all assessment times (6, 12, 24 and 48 h after infestation) throughout the month-long study. Broadline® was 0% to 16.7% effective at 6 h, 26.8% to 50.0% effective at 12 h, while at 24 h after infestation efficacy peaked at 81.5% on D15 declining to 31.5% on D29. Based on the 48 h tick counts, the efficacy of Broadline® peaked at 100% on D16 after treatment and decreased to 83.2% by D30. The Seresto® collar provided significantly faster speed of kill and better persistent acaricidal effectiveness against Ixodes ricinus on cats compared to Broadline® spot-on. The additional repellent (antifeeding) effect of Seresto® prevents parasites from taking a blood meal and thereby reduces the risk of vectorborne disease pathogen transmission.Bayer Animal Healthhttp://link.springer.com/journal/4362016-08-31hb2015ab201

    Vector-borne and other pathogens of potential relevance disseminated by relocated cats

    Get PDF
    Large populations of unowned cats constitute an animal welfare, ecological, societal and public health issue worldwide. Their relocation and homing are currently carried out in many parts of the world with the intention of relieving suffering and social problems, while contributing to ethical and humane population control in these cat populations. An understanding of an individual cat’s lifestyle and disease status by veterinary team professionals and those working with cat charities can help to prevent severe cat stress and the spread of feline pathogens, especially vector-borne pathogens, which can be overlooked in cats. In this article, we discuss the issue of relocation and homing of unowned cats from a global perspective. We also review zoonotic and non-zoonotic infectious agents of cats and give a list of practical recommendations for veterinary team professionals dealing with homing cats. Finally, we present a consensus statement consolidated at the 15th Symposium of the Companion Vector-Borne Diseases (CVBD) World Forum in 2020, ultimately to help veterinary team professionals understand the problem and the role they have in helping to prevent and manage vector-borne and other pathogens in relocated cats

    A community approach of pathogens and their arthropod vectors (ticks and fleas) in dogs of African Sub-Sahara

    Get PDF
    BACKGROUND : Arthropod-borne pathogens and their vectors are present throughout Africa. They have been wellstudied in livestock of sub-Saharan Africa, but poorly in companion animals. Given the socio-economic importance of companion animals, the African Small Companion Animal Network (AFSCAN), as part of the WSAVA Foundation, initiated a standardized multi-country surveillance study. METHODS : Macro-geographic variation in ectoparasite (ticks and fleas) and pathogen communities in dogs was assessed through molecular screening of approximately 100 infested dogs in each of six countries (Ghana, Kenya, Nigeria, Tanzania, Uganda and Namibia), both in rural and urban settings. The most important intrinsic and extrinsic risk factors within the subpopulation of infested dogs were evaluated. RESULTS : Despite the large macro-geographic variation in the dogs screened, there was no consistent difference between East and West Africa in terms of the diversity and numbers of ticks. The highest and lowest numbers of ticks were found in Nigeria and Namibia, respectively. Most often, there was a higher diversity of ticks in rural habitats than in urban habitats, although the highest diversity was observed in an urban Uganda setting. With the exception of Namibia, more fleas were collected in rural areas. We identified tick species (including Haemaphysalis spinulosa) as well as zoonotic pathogens (Coxiella burnetti, Trypanosoma spp.) that are not classically associated with companion animals. Rhipicephalus sanguineus was the most abundant tick, with a preference for urban areas. Exophilic ticks, such as Haemaphysalis spp., were more often found in rural areas. Several multi-host ticks occurred in urban areas. For R. sanguineus, housing conditions and additional pets were relevant factors in terms of infestation, while for a rural tick species (Haemaphysalis elliptica), free-roaming dogs were more often infested. Tick occurrence was associated to the use of endoparasiticide, but not to the use of ectoparasiticide. The most prevalent tick-borne pathogen was Hepatozoon canis followed by Ehrlichia canis. High levels of co-parasitism were observed in all countries and habitats. CONCLUSIONS : As dogs share a common environment with people, they have the potential to extend the network of pathogen transmission to humans. Our study will help epidemiologists to provide recommendations for surveillance and prevention of pathogens in dogs and humans.Additional file 1: Fig. S1. Overview of sampling times and average seasonal variation in precipitation and temperature. Table S1. Distribution of PCR signals allocated to an ectoparasite taxon (identification at genus level and more precise) in the infested dogs of urban and rural areas. Table S2. Distribution of co-infested dogs within the subpopulation of tick-infested dogs. Table S3. Co-infestations by different flea species (identification at genus level and lower). Table S4. Co-infections in dog blood. Table S5. Co-infections in dog ticks. Table S6. Co-infections in dog fleas. Table S7. Correlations with sero-prevalences. Table S8. Correlations with flea-borne pathogens.Additional file 2. Capture form.The Marie Sklodowska-Curie Actions, Bayer Animal Health GmbH, an Elanco Animal Health company, within the framework of the African Small Companion Animal Network (AFSCAN) program of the World Small Animal Veterinary Association (WASAVA) and supported by Idexx Laboratories and Clinvet International (Pty) Ltd.http://www.parasitesandvectors.comam2022Veterinary Tropical Disease

    Vector-borne and other pathogens of potential relevance disseminated by relocated cats

    Get PDF
    © 2022. The Author(s).Large populations of unowned cats constitute an animal welfare, ecological, societal and public health issue worldwide. Their relocation and homing are currently carried out in many parts of the world with the intention of relieving suffering and social problems, while contributing to ethical and humane population control in these cat populations. An understanding of an individual cat's lifestyle and disease status by veterinary team professionals and those working with cat charities can help to prevent severe cat stress and the spread of feline pathogens, especially vector-borne pathogens, which can be overlooked in cats. In this article, we discuss the issue of relocation and homing of unowned cats from a global perspective. We also review zoonotic and non-zoonotic infectious agents of cats and give a list of practical recommendations for veterinary team professionals dealing with homing cats. Finally, we present a consensus statement consolidated at the 15th Symposium of the Companion Vector-Borne Diseases (CVBD) World Forum in 2020, ultimately to help veterinary team professionals understand the problem and the role they have in helping to prevent and manage vector-borne and other pathogens in relocated cats.publishersversionpublishe

    Novel High-Throughput Multiplex qPCRs for the Detection of Canine Vector-Borne Pathogens in the Asia-Pacific

    No full text
    The Asia-Pacific hosts a large diversity of canine vector-borne pathogens (VBPs) with some of the most common and most pathogenic, generating significant mortality as well as a spectrum of health impacts on local dog populations. The VBPs Anaplasma platys, Babesia gibsoni, Babesia vogeli, Ehrlichia canis, Hepatozoon canis and haemotropic Mycoplasma spp. are all endemic throughout the region, with many exhibiting shifting geographical distributions that warrant urgent attention. Moreover, many of these species cause similar clinical signs when parasitising canine hosts, whilst knowledge of the exact pathogen is critical to ensure treatment is effective. This is complicated by frequent coinfection that can exacerbate pathology. Here, we describe the development, optimisation and validation of two novel quadruplex Taq-Man based real-time PCRs (qPCRs) for the specific and sensitive detection of the aforementioned VBPs. To ensure accurate evaluation of diagnostic performance, results of our qPCRs were evaluated on field samples from Thai dogs and compared with both conventional PCR (cPCR) results and next-generation sequencing (NGS) metabarcoding. Our qPCRs were found to be more sensitive at detecting canine VBP than cPCR and generated results similar to those achieved by NGS. These qPCRs will provide a valuable high-throughput diagnostic tool available to epidemiologists, researchers and clinicians for the diagnosis of key canine VBPs in the Asia-Pacific and further afield

    A study on the long-term efficacy of Seresto® collars in preventing Babesia canis (Piana & Galli-Valerio, 1895) transmission to dogs by infected Dermacentor reticulatus (Fabricius, 1794) ticks

    No full text
    Abstract Background An imidacloprid/flumethrin collar (Seresto®) was previously shown to prevent infection with Babesia canis, transmitted by Dermacentor reticulatus, in dogs for up to 1 month after application. The present study evaluated the prevention of transmission throughout the claimed efficacy period of 8 months. Methods Eight animals each were randomly included in groups 1 (negative control) and 2 (Seresto® collar), respectively. Animals in group 2 received the Seresto® collar on Day 0. Tick challenges were performed monthly from the 2nd to the 8th month. Assessment criteria included in situ tick counts 48 hours post-challenge, polymerase chain reaction (PCR) analyses and immunofluorescence assays (IFA). Whenever dogs were diagnosed with babesiosis they were “rescue-treated”, excluded and replaced. Consequently, 24 replacement animals were introduced at various time points throughout the study in the control group; thus data for a total of 32 dogs were available in the latter group at study termination. Results Acaricidal efficacy for in situ counts was 93% on Day 30, and ranged from 97 to 100% thereafter. No B. canis specific DNA or antibodies were detected in any Seresto®-treated dog at any time. Babesia canis-specific DNA and antibodies were detected in 2–6 of 8 control dogs after each challenge, confirming the validity of the challenge model. Conclusions The Seresto® collar was highly effective against challenges with D. reticulatus ticks for up to 8 months. The high sustained acaricidal efficacy over this period prevented transmission of B. canis, thus fully protecting dogs against infection in this experimental infestation model
    corecore