741 research outputs found

    Proton Wires in an Electric Field: the Impact of Grotthuss Mechanism on Charge Translocation

    Full text link
    We present the results of the modeling of proton translocation in finite H-bonded chains in the framework of two-stage proton transport model. We explore the influence of reorientation motion of protons, as well as the effect of electric field and proton correlations on system dynamics. An increase of the reorientation energy results in the transition of proton charge from the surrounding to the inner water molecules in the chain. Proton migration along the chain in an external electric field has a step-like character, proceeding with the occurrence of electric field threshold-type effects and drastic redistribution of proton charge. Electric field applied to correlated chains induces first a formation of ordered dipole structures for lower field strength, and than, with a further field strength increase, a stabilization of states with Bjerrum D-defects. We analyze the main factors responsible for the formation/annihilation of Bjerrum defects showing the strong influence of the complex interplay between reorientation energy, electric field and temperature in the dynamics of proton wire.Comment: 28 pages, 9 figure

    Lifetimes of states in 19Ne above the 15 O + alpha breakup threshold

    Full text link
    The 15O(alpha,gamma)19Ne reaction plays a role in the ignition of Type I x-ray bursts on accreting neutron stars. The lifetimes of states in 19Ne above the 15O + alpha threshold of 3.53 MeV are important inputs to calculations of the astrophysical reaction rate. These levels in 19Ne were populated in the 3He(20Ne,alpha)19Ne reaction at a 20Ne beam energy of 34 MeV. The lifetimes of six states above the threshold were measured with the Doppler shift attenuation method (DSAM). The present measurements agree with previous determinations of the lifetimes of these states and in some cases are considerably more precise

    Two Mode Quantum Systems: Invariant Classification of Squeezing Transformations and Squeezed States

    Get PDF
    A general analysis of squeezing transformations for two mode systems is given based on the four dimensional real symplectic group Sp(4,\Re)\/. Within the framework of the unitary metaplectic representation of this group, a distinction between compact photon number conserving and noncompact photon number nonconserving squeezing transformations is made. We exploit the Sp(4,\Re)-SO(3,2)\/ local isomorphism and the U(2)\/ invariant squeezing criterion to divide the set of all squeezing transformations into a two parameter family of distinct equivalence classes with representative elements chosen for each class. Familiar two mode squeezing transformations in the literature are recognized in our framework and seen to form a set of measure zero. Examples of squeezed coherent and thermal states are worked out. The need to extend the heterodyne detection scheme to encompass all of U(2)\/ is emphasized, and known experimental situations where all U(2)\/ elements can be reproduced are briefly described.Comment: Revtex 37 pages, Latex figures include

    Lifetime of 19Ne*(4.03 MeV)

    Get PDF
    The Doppler-shift attenuation method was applied to measure the lifetime of the 4.03 MeV state in 19Ne. Utilizing a 3He-implanted Au foil as a target, the state was populated using the 20Ne(3He,alpha)19Ne reaction in inverse kinematics at a 20Ne beam energy of 34 MeV. De-excitation gamma rays were detected in coincidence with alpha particles. At the 1 sigma level, the lifetime was determined to be 11 +4, -3 fs and at the 95.45% confidence level the lifetime is 11 +8, -7 fs.Comment: 6 pages, submitted to Phys. Rev.

    On Bures fidelity of displaced squeezed thermal states

    Get PDF
    Fidelity plays a key role in quantum information and communication theory. Fidelity can be interpreted as the probability that a decoded message possesses the same information content as the message prior to coding and transmission. In this paper, we give a formula of Bures fidelity for displaced squeezed thermal states directly by the displacement and squeezing parameters and birefly discuss how the results can apply to quantum information theory.Comment: 10 pages with RevTex require

    Ultra-high brilliance multi-MeV γ\gamma-ray beam from non-linear Thomson scattering

    Full text link
    We report on the generation of a narrow divergence (θ2.5\theta\approx 2.5 mrad), multi-MeV (EMAX=18E_\text{MAX} = 18 MeV) and ultra-high brilliance (2×1019\approx 2\times10^{19} photons s1^{-1} mm2^{-2} mrad 2^{-2} 0.1\% BW) γ\gamma-ray beam from the scattering of an ultra-relativistic laser-wakefield accelerated electron beam in the field of a relativistically intense laser (dimensionless amplitude a02a_0\approx2). The spectrum of the generated γ\gamma-ray beam is measured, with MeV resolution, seamlessly from 6 MeV to 18 MeV, giving clear evidence of the onset of non-linear Thomson scattering. The photon source has the highest brilliance in the multi-MeV regime ever reported in the literature

    Self-energy limited ion transport in sub-nanometer channels

    Full text link
    The current-voltage characteristics of the alpha-Hemolysin protein pore during the passage of single-stranded DNA under varying ionic strength, C, are studied experimentally. We observe strong blockage of the current, weak super-linear growth of the current as a function of voltage, and a minimum of the current as a function of C. These observations are interpreted as the result of the ion electrostatic self-energy barrier originating from the large difference in the dielectric constants of water and the lipid bilayer. The dependence of DNA capture rate on C also agrees with our model.Comment: more experimental material is added. 4 pages, 7 figure

    A Magnetic Flux Tube Oscillation Model for QPOs in SGR Giant Flares

    Full text link
    Giant flares from soft gamma-ray repeaters (SGRs) are one of the most violent phenomena in neutron stars. Quasi-periodic oscillations (QPOs) with frequencies ranging from 18 to 1840 Hz have been discovered in the tails of giant flares from two SGRs, and were ascribed to be seismic vibrations or torsional oscillations of magnetars. Here we propose an alternative explanation for the QPOs in terms of standing sausage mode oscillations of flux tubes in the magnetar coronae. We show that most of the QPOs observed in SGR giant flares could be well accounted for except for those with very high frequencies (625 and 1840 Hz).Comment: 15 pages,1 figures,1 table, accepted for publication in The Astrophysical Journa

    Multiplicity Distributions of Squeezed Isospin States

    Get PDF
    Multiplicity distributions of neutral and charged particles arising from squeezed coherent states are investigated. Projections onto global isospin states are considered. We show how a small amount of squeezing can significantly change the multiplicity distributions. The formalism is proposed to describe the phenomenological properties of neutral and charged particles anomalously produced in hadronic and nuclear collisions at very high energies.Comment: 17 pages, 6 figures sent upon request ([email protected]
    corecore