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Abstract

A general analysis of squeezing transformations for two mode systems is given

based on the four dimensional real symplectic group Sp(4,<). Within the

framework of the unitary metaplectic representation of this group, a distinc-

tion between compact photon number conserving and noncompact photon

number nonconserving squeezing transformations is made. We exploit the

Sp(4,<)− SO(3, 2) local isomorphism and the U(2) invariant squeezing cri-

terion to divide the set of all squeezing transformations into a two parameter

family of distinct equivalence classes with representative elements chosen for

each class. Familiar two mode squeezing transformations in the literature are

recognized in our framework and seen to form a set of measure zero. Examples

of squeezed coherent and thermal states are worked out. The need to extend

the heterodyne detection scheme to encompass all of U(2) is emphasized, and

known experimental situations where all U(2) elements can be reproduced are

briefly described.
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I. INTRODUCTION

The theoretical analysis [1] and experimental [2], [3], [4] realization of squeezed states of

radiation continue to receive a great deal of attention. While much of the work so far has

concerned itself with single mode situations [5], [6] some analysis of two-mode states has also

been presented [7], [8]. Other nonclassical effects of radiation beyond second order have also

received attention in the literature [9]. More recently, a general invariant squeezing criterion

for n-mode systems has been developed by some of us elsewhere [10].

The purpose of the present paper is to study squeezing transformations for two-mode

systems, and to develop a classification scheme for them motivated by the above men-

tioned invariant squeezing criterion. Basic to all such discussions is the four-dimensional

real symplectic group Sp(4,<), of real linear homogeneous canonical transformations, and

the unitary metaplectic representation of this group acting on the Hilbert space of states

for a two-mode quantum system. The structure of the noncompact group Sp(4,<) ( and

its n-mode counterpart Sp(2n,<)) leads to a natural separation of its elements into passive

(compact), and active (noncompact) types. Here the adjectives passive and active mean

total photon number conserving and nonconserving respectively. This group theoretical

framework gives us an unambiguous way of defining precisely the family of squeezing trans-

formations; they are the active elements of Sp(4,<) and they do not form a subgroup. The

action of the maximal compact (passive) subgroup U(2) of Sp(4,<) on the set of squeezing

transformations by conjugation leads to a natural equivalence relation, leading to the emer-

gence of equivalence classes and convenient representative elements as well. In studying the

physical properties of a state subjected to squeezing, therefore, we are able to isolate the

dependence on intrinsic squeezing parameters and separate them from other passive factors.

As might be expected, the single squeeze factor encountered in the studies of single mode

states gets enlarged here to two independent intrinsic squeeze factors; and it turns out that

the two mode squeezing transformations so far studied in the literature form a very small

subset of all the independent available possibilities.

3



The material in this paper is arranged as follows: Section II sets up the basic kine-

matics for two mode systems, the Fock and Schrödinger representations and the actions of

Sp(4,<) on the canonical variables and states. The variance matrix for a general state and

its change under Sp(4,<) are derived. After identifying the maximal compact or passive

U(2) subgroup of Sp(4,<), the U(2) invariant squeezing criterion for two mode systems

is discussed. Section III introduces the generators for the metaplectic representation of

Sp(4,<) and brings out the connection to the SO(3, 2) Lie algebra. The photon number

conserving compact generators and the remaining noncompact ones are clearly identified.

Based on the polar decomposition theorem for general elements of Sp(4,<) we are then led

to a precise definition of squeezing transformations: These are single exponentials of linear

combinations of the noncompact metaplectic generators. We then proceed to break up the

set of all squeezing transformations into equivalence classes under U(2) action. We find that

these classes form a continuous two parameter family describable by points in an octant in

a two dimensional plane. The families of Caves-Schumaker transformations and essentially

single mode transformations correspond to one dimensional lines bounding this octant and

so are of measure zero. Section IV applies our formalism to two mode squeezed coherent

and thermal states. In Section V we see how the heterodyne detection scheme fits into our

analysis. We argue that it is necessary to experimentally realise all elements of the U(2)

subgroup of Sp(4,<); the heterodyne scheme only handles a one parameter subset of U(2).

Two examples of two-mode situations where all elements of U(2) can be experimentally

realised are briefly described. Section VI contains some concluding remarks.

II. SYMPLECTIC GROUP FOR TWO MODES AND THE SQUEEZING

CRITERION

We consider two orthogonal modes of the radiation field, with annihilation operators

aj, j = 1, 2, and corresponding creation operators a†j. These two modes could, for example,

be two different frequencies for the same or different propagation directions and polarizations,
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two different propagation directions at a common frequency, two different polarization states

of plane waves degenerate in frequency and direction of propagation, etc. We arrange these

operators in the form of a four-component column vector:

ξ(c) = (ξ(c)
a ) =

























a1

a2

a†1

a†2

























,

a = 1, 2, 3, 4. (2.1)

The superscript (c) indicates that the entries here are complex, i.e., nonhermitian, operators.

For discussion of quadrature squeezing, however, we need to also deal with the hermitian

quadrature components of these operators. Therefore we define another column vector ξ

with four hermitian entries, related to ξ(c) by a fixed numerical matrix, as follows:

ξ = (ξa) =

























q1

q2

p1

p2

























,

qj =
1√
2
(aj + a†j) , pj =

−i√
2
(aj − a†j);

ξ(c) = Ωξ , ξ = Ω−1 ξ(c),

Ω = (Ω−1)† =
1√
2

























1 0 i 0

0 1 0 i

1 0 −i 0

0 1 0 −i

























. (2.2)

The canonical commutation relations can now be written either in terms of ξ or (in two

ways) in terms of ξ(c):

[ξa, ξb] = iβab,

[ξ(c)
a , ξ

(c)
b ] = βab,

5



[ξ(c)
a , ξ

(c)
b

†] = (Σ3)ab,

(βab) =

























0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

























,

((Σ3)ab) =

























1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

























. (2.3)

A general real linear homogeneous transformation on the q’s and p’s is described by a

4 × 4 real matrix S acting as follows:

ξ → ξ′ = Sξ

ξ′a = Sabξb. (2.4)

If the ξ′a are to satisfy the same commutation relations as the ξa, the condition on S is:

S β ST = β. (2.5)

This is the defining property for the elements of the group Sp(4,<), which is a noncompact

group:

Sp(4,<) =
{

S = 4 × 4 real matrix
∣

∣

∣ S β ST = β
}

. (2.6)

Note that β = −β−1 itself is an element of Sp(4,<) whereas Σ3 is not. Further, S ∈ Sp(4,<)

implies −S, ST , S−1 = β STβT ∈ Sp(4,<) and detS = 1 for every S ∈ Sp(4,<).

The action of Sp(4,<) on the nonhermitian operators ξ(c)
a is by a (generally) complex

matrix S(c) related to S by conjugation with Ω:

S ∈ Sp(4,<) : ξ′ = Sξ ⇒

ξ(c) ′ = S(c) ξ(c),

S(c) = Ω S Ω†. (2.7)
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We denote the Hilbert space on which ξ and ξ(c) act by H. Since the hermiticity prop-

erties and commutation relations of the ξa are maintained by the transformation (2.4) for

any S ∈ Sp(4,<), and since the ξa act irreducibly on H, it follows from the Stone-von

Neumann theorem [11] that it should be possible to construct a unitary operator U(S) on

H implementing (2.4) via conjugation:

S ∈ Sp(4,<) : Sabξb = U(S)−1 ξa U(S) ,

U(S)† U(S) = 1 on H . (2.8)

This U(S), for each S, is clearly arbitrary upto (and only upto by virtue of irreducibility)

an S-dependent phase. Even after making use of this freedom, however, it turns out that

we cannot choose the operators U(S) for various S so as to give us a true unitary represen-

tation of Sp(4,<) on H. Rather, after maximum simplification, they give us a two-valued

representation of this group [12]:

S1 , S2 ∈ Sp(4,<) : U(S1) U(S2) = ±U(S1 S2). (2.9)

Alternatively we can regard theU(S), chosen so as to obey this composition law, as providing

a true and faithful unitary representation of the four-dimensional metaplectic group Mp(4),

which in turn is a two-fold cover of Sp(4,<). In the literature the operators U(S) are often

said to provide the metaplectic representation of Sp(4,<). The connection between Mp(4)

and Sp(4,<) has some similarity with the one between SU(2) and SO(3) familiar in angular

momentum theory.

Now we consider physical states of the two-mode system, the action of Sp(4,<) on them,

and the statement of a suitable squeezing criterion. Let ρ be the density operator of any

(pure or mixed) state of the two-mode radiation field. With no loss of generality we may

assume that the means Tr (ρξa) of ξa vanish in this state. (Any non-zero values for these

means can always be reinstated by a suitable phase space displacement which has no effect

on the squeezing properties). Squeezing involves the set of all second order noise moments

of the quadrature operators qj and pj . To handle them collectively we define the variance

or noise matrix V for the state ρ as follows:
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V = (Vab),

Vab = Vba =
1

2
Tr (ρ{ξa, ξb}). (2.10)

This definition is valid for a system with any number of modes. For a two-mode system it

can be written explicitly in terms of qj and pj as:

V =

























〈q2
1〉 〈q1q2〉 1

2
〈{q1, p1}〉 〈q1p2〉

〈q1q2〉 〈q2
2〉 〈q2p1〉 1

2
〈{q2, p2}〉

1
2
〈{q1, p1}〉 〈q2p1〉 〈p2

1〉 〈p1p2〉

〈q1p2〉 1
2
〈{q2, p2}〉 〈p1p2〉 〈p2

2〉

























(2.11)

This matrix is real symmetric positive definite and obeys additional inequalities expressing

the Heisenberg uncertainty principle of quantum mechanics [10].

When the state ρ is transformed to a new state ρ′ by the unitary operator U(S) for some

S ∈ Sp(4,<), we see easily from eqs (2.8, 2.10) that the variance matrix V undergoes a

symmetric symplectic transformation:

S ∈ Sp(4,<) : ρ′ = U(S) ρ U(S)−1 ⇒

V ′= S V ST . (2.12)

This transformation law for V preserves all the properties mentioned at eq. (2.11).

Towards setting up a squeezing criterion, we identify an important subgroup of Sp(4,<),

namely its maximal compact subgroup K ≡ U(2). This consists of matrices S ∈ Sp(4,<)

having a specific block form determined by two-dimensional unitary matrices belonging to

U(2):

K = U(2) =
{

S(X, Y ) ∈ Sp(4,<)
∣

∣

∣ U = X − iY ∈ U(2)
}

⊂ Sp(4,<),

S(X, Y ) =









X Y

−Y X









. (2.13)

]Here X and Y are the real and imaginary parts of U ; and the unitary condition U † U = 1

on U ensures that S(X, Y ) obeys the symplectic condition (2.5). We also recognise that
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this subgroup K is the intersection of the symplectic and the orthogonal groups in four real

dimensions, namely

K = U(2) = Sp(4,<) ∩O(4) :

S(X, Y ) (β or 1) S(X, Y )T = β or 1. (2.14)

The complex form S(c)(X, Y ) corresponding to S(X, Y ), and which acts on ξ(c), is rather

simple; it is given by

S(c)(X, Y ) ≡ S(c)(U)

=









X − iY 0

0 X + iY









(2.15)

Thus the maximal compact subgroup of Sp(4,<) mixes a1 and a2 unitarily, but does not mix

the aj with the a†j. This fact may be explained by saying that the subgroup U(2) of Sp(4,<)

consists of passive, or total photon number conserving, transformations.

We see that the physical requirement that the total number of photons be conserved

singles out a unique maximal compact subgroup of Sp(4, R) out of many equivalent ones. In

contrast, elements of Sp(4,<) outside the subgroup U(2) are non-compact elements which do

not conserve total photon number, and so describe active transformations. (These properties

of compact and non-compact elements of Sp(4,<) will become transparent when we identify

their generators in the following Section).

As has been discussed in detail elsewhere [10], [13], for a multimode system it is physically

reasonable to set up a definition of squeezing which is invariant under the subgroup of

passive transformations of the full symplectic group. For the present case of two-mode

systems, we evidently need a U(2)-invariant squeezing criterion. That is, our definition

must be such that if a state ρ with variance matrix V is found to be squeezed, then the state

U(S(X, Y )) ρ U(S(X, Y ))−1 with variance matrix V ′ = S(X, Y ) V S(X, Y )T must also be

squeezed, for any U = X − iY ∈ U(2).

Conventionally a state is said to be squeezed if any one of the diagonal elements of V is

less than 1/2. The diagonal elements correspond, of course, to fluctuations in the “chosen”
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set of quadrature components of the system. The U(2)-invariant definition is as follows:

the state ρ is a quadrature squeezed state if either some diagonal element of V is less than

1/2 (and then we say that the state is manifestly squeezed), or some diagonal element of

V ′ = S(X, Y ) V S(X, Y )T for some U = X − iY ∈ U(2) is less than 1/2:

ρ is a squeezed state ⇔
(

S(X, Y ) V S(X, Y )T
)

aa
<

1

2

for some a and some X − iY ∈ U(2). (2.16)

That is, running over S(X, Y ) ∈ K is the same as running over all possible sets of quadrature

components. We may say that since any element of U(2) passively mixes the two modes,

the appropriate S(X, Y ) ∈ K which achieves the above inequality for some a (assuming the

given V permits the same) just chooses the right combination of quadratures to make the

otherwise possibly hidden squeezing manifest.

To implement this definition in practice, it would appear that even if a state is intrinsi-

cally squeezed, we may have to explicitly find a suitable U(2) transformation which when

applied to V makes the squeezing manifest. This however could be complicated. Here

the point to be noticed and appreciated is that diagonalisation of a noise matrix V gen-

erally requires a real orthogonal transformation belonging to SO(4) which may not lie in

U(2) = O(4)∩Sp(4,<). It is therefore remarkable that, as shown in [10], the U(2)-invariant

squeezing criterion (2.16) can be expressed in terms of the spectrum of eigenvalues of V ,

namely:

ρ is a squeezed state ⇔ `(V ) = least eigenvalue of V <
1

2
. (2.17)

That is, while the diagonalization of V is in general not possible within K = U(2) which

is a proper subgroup of O(4), any one particular (and hence the smallest) eigenvalue of V

can be made to become one of the diagonal elements of V transformed by an appropri-

ate S(X, Y ) ∈ K. In other words any quadrature component can be taken to any other

quadrature component by a suitable element of U(2). We shall in the sequel work with the
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U(2)-invariant squeezing criterion (2.16, 2.17).

III. THE SP (4,<)− SO(3, 2) CONNECTION AND CLASSIFICATION OF

TWO-MODE SQUEEZING TRANSFORMATIONS

We have shown in the previous Section that the group Sp(4,<) of linear canonical

transformations contains two kinds of elements: passive total photon-number conserving

elements belonging to the maximal compact subgroup K = U(2); and active noncompact

elements lying outside this subgroup, and which do not conserve total photon number. It is

clear from the U(2)-invariant squeezing criterion (2.16,2.17) that the former elements can-

not produce squeezing. This is because the corresponding changes in the variance matrix,

V ′ = S(X, Y ) V S(X, Y )T , being similarity transformations preserve the eigenvalue spec-

trum of V ; hence `(V ) ≥ 1/2 implies `(V ′) ≥ 1/2 and conversely for every S(X, Y ) ∈ U(2).

The noncompact elements of Sp(4,<), on the other hand, while they do not form a subgroup,

have the potential to produce a squeezed state starting from a nonsqueezed state. Thus they

may be called squeezing transformations. The following questions then naturally arise: what

are the really distinct squeezing transformations which are not related to each other by just

passive transformations, and how can they be invariantly labelled or parametrised?

To answer these questions it is useful to work at the level of the Lie algebra Sp(4,<) of

Sp(4,<), and the hermitian generators of the unitary metaplectic representation U(S) acting

on H. As is well known, these generators are basically all possible hermitian symmetric

quadratic expressions in the canonical variables q and p. They may be expressed more

transparently for our purposes in terms of a’s and a†’s. While it is possible to set up the

generators in a uniform manner for all Sp(2n,<), in the two-mode case we can exploit the

fact that the group Sp(4,<) is locally isomorphic to the de Sitter group SO(3, 2) [14], as

they share the same Lie algebra. We therefore choose the basis for Sp(4,<) to make this

explicit; it helps us visualise geometrically the analysis to follow [15]. We define the ten

generators Q, Jr, Kr, Lr, r = 1, 2, 3 of Sp(4, R) as:
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Q =
1

2
(N + 1) =

1

2
(a†1a1 + a†2a2 + 1); (3.1a)

J1 =
1

2
(a†1a2 + a†2a1),

J2 =
i

2
(a†2a1 − a†1a2),

J3 =
1

2
(a†1a1 − a†2a2); (3.1b)

K1 =
1

4
(a†1

2 + a2
1 − a†2

2 − a2
2),

K2 = − i

4
(a†1

2 − a2
1 + a†2

2 − a2
2),

K3 = −1

2
(a†1a

†
2 + a1a2); (3.1c)

L1 =
i

4
(a†1

2 − a2
1 − a†2

2 + a2
2),

L2 =
1

4
(a†1

2 + a2
1 + a†2

2 + a2
2),

L3 = − i

2
(a†1a

†
2 − a1a2). (3.1d)

These particular quadratic expressions in aj and a†j are chosen because the commutation

relations have a suggestive simple form:

[Jr, Js] = iεrstJt,

[Q, Jr] = 0; (3.2a)

[Jr, Ks or Ls] = iεrst(Kt or Lt),

[Q,Kr ± iLr] = ∓(Kr ± iLr); (3.2b)

[Kr, Ks] = [Lr, Ls] = −iεrstJt,

[Kr, Ls] = iδrsQ. (3.2c)

Comparing and combining the above two sets of equations we see that the four operators

Q and Jr are the photon-number conserving generators of U(2) (being respectively the

generators of the U(1) and SU(2) parts of U(2)); while the six operators Kr and Lr are the

noncompact generators of squeezing transformations.

The connection to SO(3, 2) becomes evident by regarding these generators as the various

components of an antisymmetric setMAB = −MBA, where the indicesA,B go over the range
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1, 2, . . . ,5:

Q = M45, Jr=
1

2
εrstMst;

Kr = Mr4, Lr= Mr5. (3.3)

Then the commutation relations (3.2) take on the de Sitter form

[MAB ,MCD] = i(gACMBD − gBCMAD + gADMCB − gBDMCA),

gAB = diag .(+1,+1,+1,−1,−1). (3.4)

In this picture, Q, Jr are generators of rotations in the 4-5 plane and in the 1-2-3 subspace

respectively, together making up the maximal compactSO(2)×SO(3) subgroup of SO(3, 2).

With respect to the Fock or two mode photon number basis |n1, n2〉 for H the situation is

that all these vectors with a fixed total number n = n1 + n2, (n+ 1) in all, are eigenvectors

of Q with a common eigenvalue (n + 1)/2; and they simultaneously provide the spin n/2

representation of the SO(3) subgroup generated by Jr. On the other hand, the Kr and

Lr, r = 1, 2, 3 are noncompact Lorentz boost generators in the r − 4 and r − 5 planes

respectively.

With this algebraic background, we go on to consider two-mode squeezing transforma-

tions. It is a well known fact [15] [16] that each matrix S ∈ Sp(4,<) can be decomposed,

globally and uniquely, into the product of two particular kinds of Sp(4,<) matrices: one

factor belongs to the subgroup K, the other to a subset Π defined in the following way:

Π =
{

S ∈ Sp(4,<)
∣

∣

∣ ST = S = positive definite
}

⊂ Sp(4,<). (3.5)

We shall hereafter denote elements in Π by P, P ′, . . .. The decomposition mentioned above

is then:

S ∈ Sp(4,<) : S = P S(X, Y ),

P ∈ Π,

X − iY ∈ U(2), (3.6)
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with both factors being uniquely determined by S. This is the form in the present context

of the familiar polar decomposition formula [17] for a general matrix. For the metaplectic

operators U(S) we have the corresponding statement

U(S) = U(P ) U(S(X, Y )),

U(P ) = exp
[

i(real linear combination of ~K and ~L)
]

,

U(S(X, Y )) = exp
[

i(real linear combination of Q and ~J)
]

. (3.7)

We may now identify precisely the most general squeezing transformation within the

Sp(4,<) framework, as the operator U(P ) characterised by two numerical three-dimensional

vectors ~k, ~l appearing as coefficients of ~K and ~L in the exponent:

U(~k,~l) = exp
[

i(~k · ~K +~l · ~L)
]

. (3.8)

Thus we reserve the name squeezing transformations for these elements of Π within Sp(4,<),

represented in the metaplectic representation by a single exponential factor. (It is well to

keep in mind that Π is not a subgroup, so the product of two such single exponential

squeezing transformations is in general not a similar single exponential. This is analogous

to the well known fact that the product of two SO(3, 1) Lorentz boosts is not just a boost

but a boost followed or preceded by a rotation called the Wigner rotation [18]).

We may relate the decomposition (3.7) of a general metaplectic transformation to a

general quadratic Hamiltonian quite directly. Any such Hamiltonian containing both photon

conserving and nonconserving terms with possibly time dependent coefficients would lead via

the Schrödinger equation to a unitary finite time evolution operator which can be uniquely

decomposed into the product form (3.7). Thus, integration of the Schrödinger equation leads

in general to a specific passive factor and another specific squeezing transformation. In case

the Hamiltonian is time independent and a combination only of the generators ~K and ~L,

this evolution operator is already of the form U(P ).

Since we have a U(2)-invariant squeezing criterion, as we have seen, elements of U(2)

have no effect on the squeezed or nonsqueezed status of any given state. This means that

14



the U(2) transform, by conjugation, of a squeezing transformation is another squeezing

transformation which should be regarded as equivalent to the first one. It is clear that, in

any case, any equivalence relation among squeezing transformations as defined by us above

should be based on processes which take one squeezing transformation to another.

Now from the commutation relations (3.2b) we can see that the generators ~K, ~L, and the

squeezing transformations U(~k,~l) defined in eq. (3.8), behave as follows under conjugation

by elements of U(2):

eiθQ
(

~K ± i~L
)

e−iθQ = e∓iθ
(

~K ± i~L
)

,

ei~α · ~J (Kr or Lr) e
−i~α · ~J = Rsr(~α) (Ks or Ls) ; (3.9a)

eiθQU(~k,~l)e−iθQ = U(~k′,~l′),








~k′

~l′









=









cos θ − sin θ

sin θ cos θ

















~k

~l









; (3.9b)

ei~α · ~JU(~k,~l)e−i~α · ~J = U(~k′′,~l′′),

k′′r or l′′r = Rrs(~α) (ks or ls) ; (3.9c)

Rrs(~α) = δrs cosα + αrαs
1 − cosα

α2
+ εrstαt

sinα

α
,

α = |~α|. (3.9d)

Here we have listed separately the effects of U(1) and SU(2) within U(2) on the generators

and the squeezing transformations. The questions raised at the start of this Section can now

be posed more precisely: If the set of squeezing transformations U(~k,~l) is separated into

distinct nonoverlapping equivalence classes based on the U(2) action (3.9), how can we con-

veniently choose U(2)-invariant parameters to label these classes, and then pick a convenient

representative element from each class? We answer these questions in this sequence.

It is clear that we need to construct a complete set of independent expressions in ~k and ~l,

invariant under both U(1) and SU(2) actions (3.9b, 3.9c). We begin by defining the matrix

M of scalar products among ~k and ~l, which is then SU(2) invariant:
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M(~k,~l) =









~k · ~k ~k ·~l
~k ·~l ~l ·~l









. (3.10)

This is a real, symmetric positive semi-definite matrix. With respect to U(1) action, we see

from eq. (3.9b) that M(~k,~l) undergoes a similarity transformation by the rotation matrix

of angle θ:

M(~k′,~l′) = R(θ) M(~k,~l) R(θ)−1,

R(θ) =









cos θ − sin θ

sin θ cos θ









. (3.11)

One now sees that there are two independent U(2) invariants that can be formed:

=1(~k,~l) = detM(~k,~l)= |~k ∧~l|2,

=2(~k,~l) = TrM(~k,~l) = |~k|2 + |~l|2; (3.12)

and it is easily checked that there are no other invariants independent of these.

Next let us tackle the problems of finding convenient parameters and representative

squeezing transformations for the U(2) equivalence classes, one for each class. We see from

eq. (3.12) that if =1 > 0 (i.e. =1 6= 0) then the two vectors ~k and ~l are both nonzero

and nonparallel; while if =1 = 0 they are parallel (and one of them could vanish). These

are therefore clearly different geometrical situations. Starting with the matrix M(~k,~l), we

see from its U(1) transformation law (3.11) that by a suitable choice of the angle θ we

can arrange the transformed matrix M(~k′,~l′) to be diagonal, and in the case of unequal

eigenvalues to place the larger eigenvalue in the first position. This means that in each

equivalence class of squeezing transformations there certainly are elements U(~k,~l) for which

~k · ~l = 0 and |~k| ≥ |~l|. This still leaves us the freedom of action by SU(2). We may now

exploit this freedom to put the (mutually perpendicular) vectors ~k and ~l into a convenient

geometrical configuration. A look at the forms of the noncompact generators ~K and ~L in

eq. (3.1) suggests that we choose ~k and ~l as follows:

~k = (0, a,0), ~l = (b, 0, 0), a ≥ b. (3.13)
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(A further reason for this choice will emerge shortly). =1 and =2 can now be evaluated in

terms of a, b to obtain the relations

=1(~k,~l) = a2b2,

=2(~k,~l) = a2 + b2,

a ≥ b ≥ 0 , (a, b) 6= (0, 0). (3.14)

With this parametrisation we can now say: there is a two-fold infinity of distinct equiva-

lence classes of squeezing transformations for two-mode systems, each class corresponding

uniquely and unambiguously to a point (a, b) in the octant a ≥ b ≥ 0 in the real a− b plane,

excluding the origin. Different points in the octant correspond to intrinsically distinct equiv-

alence classes. Within an equivalence class determined by a point (a, b), of course, one can

connect different squeezing transformations U(~k,~l) by conjugation with suitable U(2) ele-

ments. Given a squeezing transformation P ∈ Π ⊂ Sp(4,<) its class (a, b) is determined by

solving the equations

Tr (P ) = 2[cosh
(a− b)

2
+ cosh

(a+ b)

2
]

Tr (P 2) = 2[cosh(a− b) + cosh(a+ b)] (3.15)

subject to the conditions on a and b appearing in eq. (3.14).

Then we have the following convenient two-mode squeezing transformation representing

the equivalence class (a, b):

U (0)(a, b) = U (0)(a, 0) U (0)(0, b),

U (0)(a, 0) = exp(iaK2)

= exp
[−ia

2
(q1p1 + p2q2)

]

,

U (0)(0, b) = exp(ibL1)

= exp

[

ib

2
(q1p1 − q2p2)

]

. (3.16)

The two factors U (0)(a, 0) and U (0)(0, b) commute and may be written in either order, since

according to eq. (3.2c) the noncompact generators K2 and L1 commute.

17



Finally one can easily calculate the symplectic matrixS(0)(a, b) ∈ Sp(4,<), corresponding

to the metaplectic operator U (0)(a, b), by using eq. (2.8). The result is:

U (0)(a, b)−1 ξ U (0)(a, b) = S(0)(a, b) ξ,

S(0)(a, b) = diag.
(

e(a−b)/2, e(a+b)/2, e−(a−b)/2, e−(a+b)/2
)

. (3.17)

Now we can clarify that the particular choice (3.13) was dictated by the desire to have

S(0)(a, b) diagonal. This element of Sp(4,<) describes independent reciprocal scalings of

the standard quadrature components of each mode. This amounts to showing geometrically

that it is possible to diagonalise every P ∈ Π using conjugation by U(2).

We illustrate our classification scheme of two-mode squeezing transformations by giv-

ing two examples. The extensively studied Caves-Schumaker [6] transformation uses the

operator

U(C-S)(z) = exp
(

z a†1 a
†
2 − z? a1 a2

)

. (3.18)

By appearance, this attempts to involve or entangle the two modes maximally. In our

notation this squeezing transformation corresponds to the generator combination

z a†1 a
†
2 − z? a1 a2 = i(~k · ~K +~l · ~L),

~k = −2(0, 0, Im z),

~l = 2(0, 0,Re z). (3.19)

Thus the invariant parameters a and b have values

a = 2|z|, b = 0. (3.20)

The Caves-Schumaker squeezing transformations, and their U(2) conjugates, all taken to-

gether, form a one-parameter family or one-dimensional line, in the a − b octant. In that

sense they are a set of measure zero.

Another interesting case is a squeezing transformation that refers essentially to a single

mode but masquerades as a two-mode transformation:
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U(z;α, β) = exp
[

z(α?a†1 + β?a†2)
2 − z?(αa1 + βa2)

2
]

,

|α|2 + |β|2 = 1. (3.21)

After some simple algebra we find

U(z;α, β) = exp
[

i(~k · ~K +~l · ~L)
]

,

~k + i~l = 2z
(

−i(α?2 − β?2), (α?2 + β?2), 2iα?β?
)

. (3.22)

The associated invariants and parameters are

=1 = 16|z|4, =2 = 8|z|2,

a = b = 2|z|. (3.23)

These equivalence classes thus lie along the line a = b in the octant, again a one-parameter

family of zero measure. Our results are depicted in Figure 1.

We note here that the size of an equivalence class depends sensitively upon the point

(a, b). Since for a 6= 0, b 6= 0 and a 6= b none of the generators of U(2) or a linear combination

of them commute with aK2 + bL1, we have a full four parameter equivalence class. For the

cases a 6= 0, b = 0, and a = b, respectively, the vanishing of the commutators [J2, K2] and

[Q+ J3, K2 + L1] leads to reduction of the dimensionality of the equivalence class to three.

We conclude this Section with a few comments. Each point (a, b) in the octant denotes

an equivalence class of squeezing transformations, whose dependences on a and b would be

of physical significance and would show up in a variety of U(2)-invariant properties. The

two-mode transformations so far discussed in the literature lie basically along the two lines

shown in Figure 1. In this sense, most of the intrinsically distinct two-mode transformations,

their effects on various states, etc., remain to be explored. Those equivalence classes (a, b)

for which a > b involve the two modes in an essential way. We may say purely qualitatively

that the distance of the point (a, b) from the line a = b, or perhaps better the expression

(1 − b/a), is a measure of the extent to which two independent modes are involved in the

transformation. In this sense, as remarked earlier, the Caves-Schumaker transformations

involve two modes maximally.
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IV. SQUEEZED COHERENT AND THERMAL STATES FOR TWO MODES

The general two mode coherent state with complex two-component displacement α̃ =

(α1, α2) is defined by

|α̃〉 = exp
(

α̃ · ã† − α̃? · ã
)

|0, 0〉

= exp
(

−1

2
|α1|2 −

1

2
|α2|2

)

exp
(

α1a
†
1 + α2a

†
2

)

|0, 0〉. (4.1)

For this state the means of the quadrature components ξa do not vanish in general:

〈α̃|ξ|α̃〉 =
√

2 (Reα1,Reα2, Imα1, Imα2)
T . (4.2)

The variance matrix is however independent of α̃:

V (|α̃〉) = V
(

|0̃〉
)

=
1

2
14×4 . (4.3)

The most general squeezed coherent state is obtained by applying U(P ) for some P ∈

Π ⊂ Sp(4,<) to |α̃〉 for some α̃. This U(P ) is conjugate, via some U(2) element, to U (0)(a, b)

for some a, b. Now the effect of a U(2) transformation on |α̃〉 is to give us another coherent

state |α̃′〉, α̃′ being the U(2) transform of α̃. But the variance matrix is in any case α̃-

independent. To examine the U(2)-invariant squeezing condition, therefore, it suffices to

examine the particular class of squeezed coherent states

|α̃; a, b〉 = U (0)(a, b) |α̃〉. (4.4)

From eqs (2.12,3.17), the calculation of the variance matrix for this state is trivial, and it is

in fact diagonal:

V (|α̃; a, b〉) = S(0)(a, b) V (|α̃〉) S(0)(a, b)

=
1

2
S(0)(2a, 2b)

=
1

2
diag.

(

e(a−b), e(a+b), e(b−a), e−(a+b)
)

. (4.5)

Since a and b are nonnegative, and in addition a+ b > 0, we see that the least eigenvalue of

this variance matrix is
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` (V (|α̃; a, b〉)) =
1

2
e−(a+b) <

1

2
. (4.6)

These states are thus always squeezed.

If we apply any passive U(2) transformation S(X, Y ) to any one of the states |α̃; a, b〉

defined above, the variance matrix will in general change as V → V ′ = S(X, Y ) V S(X, Y )T ;

but its eigenvalue spectrum, and in particular `(V ), remains unaltered. Thus all the states

symbolically written as U(U(2)) |α̃; a, b〉, for various U(2) elements, are squeezed to the same

extent as |α̃; a, b〉, and have `(V ) given by eq. (4.6).

The Schrödinger wave functions for the subfamily of squeezed coherent states (4.4) are

particularly simple, since they are products of single mode squeezed coherent state wave-

functions:

〈q′1, q′2|α̃; a, b〉 = ψ(0)(q′1;α1, a− b) ψ(0)(q′2;α2, a+ b)

ψ(0)(q′;α, a) =
e−a/4

π1/4
exp

[

iα Imα− 1

2

(

q′ e−a/2 −
√

2α
)2
]

. (4.7)

(For a general state U(U(2)) |α̃; a, b〉, we do not expect such a product form). When we

set b = 0 (Caves-Schumaker limit), both factors show the same amount of squeezing; while

when we set a = b (essentially single mode situation) we see squeezing only in the factor

referring to the second mode. These features are as we would have expected.

The next example we look at is the case of a two-mode thermal state subjected to

squeezing. The motivation in making this choice is that the starting density operator is

explicitly U(2) invariant. The normalized density operator corresponding to inverse tem-

perature β = h̄ω/kT is described in the Fock and Schrödinger representations by:

ρ0(β) = (1 − e−β)2 exp
[

−β(a†1 a1 + a†2 a2)
]

= (1 − e−β)2
∞
∑

n1,n2=0

e−β(n1+n2)|n1, n2〉〈n1, n2|; (4.8a)

ρ0(q
′
1, q

′
2, q

′′
1 , q

′′
2;β) =

2

π
tanh2 β

2
exp

[

−1

2

(

tanh
β

2
+ coth

β

2

)

(

q′1
2 + q′2

2 + q′′1
2 + q′′2

2
)

−
(

tanh
β

2
− coth

β

2

)

(q′1q
′′
1 + q′2q

′′
2)

]

; (4.8b)
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with U(2) invariance expressed by

eiθQ ρ0(β) e−iθQ = ei~α · ~J ρ0(β) e−i~α · ~J = ρ0(β). (4.9)

Therefore it suffices to examine the properties of the density operator obtained by conju-

gating ρ0(β) with U (0)(a, b):

ρ(β; a, b) = U (0)(a, b) ρ0(β) U (0)(a, b)−1. (4.10)

The most general squeezed thermal state is evidently

U(U(2)) ρ(β; a, b) U(U(2))−1, (4.11)

but this has the same squeezing properties as ρ(β; a, b).

For the thermal state ρ0(β) the variance matrix is well known [10]:

V (ρ0(β)) =
1

2
coth

β

2
14×4 (4.12)

Therefore for the particular set of squeezed thermal states (4.10), we have diagonal variance

matrices:

V (ρ(β; a, b)) = S(0)(a, b) V (ρ0(β)) S(0)(a, b)T

=
1

2
coth

β

2
S(0)(2a, 2b)

=
1

2
coth

β

2
diag.

(

e(a−b), e(a+b), e(b−a), e−a−b
)

. (4.13)

The least eigenvalue is evidently

`(V ) =
1

2
coth

β

2
e−(a+b), (4.14)

so for a given temperature, squeezing sets in when

a+ b > ln coth
β

2
. (4.15)

In Figure 1, this region consists of all points in the a − b octant to the right of the line

a + b = ln coth β/2, which is a line perpendicular to the line a = b and at a distance

ln coth(β/2)/
√

2 from the origin.
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V. DETECTION SCHEMES AND ROLE OF U(2) TRANSFORMATIONS

We have so far not specified in any detail the two orthogonal modes of radiation being

subjected to squeezing. Let us at this point consider a situation well studied experimentally

by the heterodyne detection scheme [19]. Here the two modes differ only slightly in frequency,

but are otherwise similar. In this kind of experimental arrangement, what is actually mea-

sured is the fluctuation of a certain photocurrent, and this in turn gives the fluctuation or

variance of the q-quadrature component of a particular (passive) combination of the original

modes. The combinations of a1 and a2 that are involved form the one-parameter family

a(ψ) =
1√
2

(a1 + a2) e
−iψ/2 , 0 ≤ ψ < 4π. (5.1)

This can be regarded as the first component of a U(2)-transformed pair a′1, a
′
2:









a′1

a′2









=
1√
2









e−iψ/2 e−iψ/2

−eiψ/2 eiψ/2

















a1

a2









,

a′1 ≡ a(ψ). (5.2)

The hermitian quadrature component whose fluctuation is measured is

q(ψ) =
1√
2

(

a(ψ) + a(ψ)†
)

=
1√
2

(q1 + q2) cos
ψ

2
+

1√
2

(p1 + p2) sin
ψ

2
. (5.3)

The only experimentally adjustable parameter here is the angle ψ. The family of U(2)

elements realised in the heterodyne scheme is thus only the one-parameter set given in eq.

(5.2) parametrised by ψ, and belonging to SU(2):

UH(ψ) =
1√
2









e−iψ/2 e−iψ/2

−eiψ/2 eiψ/2









∈ SU(2). (5.4)

We notice that this is not a one-parameter subgroup of SU(2); in particular even the identity

element of the group is not contained here.

With this description of the heterodyne setup in our framework, let us see to what extent

it can be used to detect U(2)-invariant squeezing. Now a general two-mode state ρ with

23



variance matrix V , even if it is squeezed in the intrinsic sense of eq. (2.17), may not be

manifestly squeezed. That is, it may happen that Vaa ≥ 1/2 for all a = 1, . . . ,4. As our

discussion in Section (II) shows, we need to be able to experimentally realise a general U(2)-

transformation applied to the state ρ, and change its variance matrix to a form where one

of its diagonal entries (say the leading one) becomes less than 1/2. However the heterodyne

method is generally unable to do this job for us, as it can only realise the one-parameter

subset of SU(2) transformations UH(ψ) for 0 ≤ ψ < 4π.

In the two examples of squeezed coherent states and squeezed thermal states studied in

the previous Section, we have a family of states related to each other by conjugation with

U(2) for each point in the a−b plane. Each equivalence class has appropriate dimensionality

depending upon the point (a, b) as explained in Section III. It turns out that for each (a, b)

the heterodyning scheme can detect squeezing in only a one parameter subset of the family

of states. Although heterodyning detection covers the whole a−b plane it does not reach all

the states corresponding to each point in the a− b plane. For example, in the representative

chosen in eqs (4.4, 4.10), for which the variance matrix is already diagonal, the squeezing

cannot be detected by this scheme because of the absence of the identity in UH ! It should

be possible to detect squeezing in these states by a suitably modified scheme. We wish to

emphasize that there is a definite need to be able to experimentally implement the most

general elementofU(2). This would allow the experimenter to detect the degree of squeezing

unambiguously, if the state is squeezed, without any prior knowledge of the elements of the

initial variance matrix.

Having stressed the need to implement arbitrary U(2) transformations on the two modes

of radiation in order to reach the proper quadrature to exhibit squeezing, we now describe

how it can be achieved in some situations. We discuss two particular cases of the two modes

involved, the first when the two modes have the same frequency but different directions

of propagation, and the second when the modes have the same frequency and direction of

propagation but different polarisations.

The experimental setup for the first case is shown in Figure 2. We achieve an arbitrary
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U(2) transformation on the two modes by using a Mach-Zehnder interferometer with two

50:50 beam splitters (BS1 and BS2) and appropriate phase shifters [20]. The input modes

with annihilation operators a1 and a2 are subjected to equal and opposite phase shifts by

angles φ and −φ, then the modes are mixed in the beam splitter BS1, the mixed modes again

undergo equal and opposite phase shifts by angles θ and −θ and further mixing through

the beam splitter BS2. Finally they undergo unequal phase shifts by angles ψ1 and ψ2. If

the annihilation operators at the output are a′1 and a′2 then all the above operations when

combined are implemented through the transformation









a′1

a′2









=









ei(φ+ψ1) cos θ −ie−i(φ−ψ1) sin θ

−iei(φ+ψ2) sin θ e−i(φ−ψ2) cos θ

















a1

a2









(5.5)

relating the two sets of annihilation operators. The above matrix is the most general U(2)

transformation matrix. We note here that if ψ2 = −ψ1 then the transformation matrix is the

most general SU(2) transformation. Going from SU(2) to U(2) is just a matter of overall

phase and can also be achieved by free propagation.

For the second case when the two modes differ only in polarisation we achieve the arbi-

trary U(2) transformation by using two quarter wave plates (Q1, Q2) and a half wave plate

H as shown in Figure 3. The detailed discussion of this set up is given in [21]. It turns out

that the configuration Q-H-Q is not the only one but Q-Q-H and H-Q-Q also accomplish the

same result, as shown in [21]. We basically have three elements, a quarter wave plate Q1, a

half wave plate H and a quarter wave plate Q2 all three of them being coaxially mounted

and with their slow axes in the x − y plane making angles of α, β and γ respectively with

the x̂ axis. The two modes having annihilation operators a1 and a2 moving along the ẑ

direction pass through this arrangement. If the annihilation operators at the output are

a′1 and a′2 then they are related to the operators at the input by an SU(2) transformation

given in terms of α, β and γ. By changing these parameters one can reproduce any desired

SU(2) element. As has been pointed out earlier going to U(2) now is just a matter of free

propagation.
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In both the above cases, by going to the proper U(2) element we can make the squeezing(if

present) manifest and bring it to the leading diagonal element of the variance matrix i.e. in

the quadrature q′1 = 1√
2
(a′1 + a†′1 ). The squeezing in this quadrature can now be measured

by any standard one mode detection method.

These remarks show on the one hand the way the heterodyning scheme fits into our

general analysis, and on the other hand the need to devise new schemes capable of realising

all elements of U(2), tailored to the definition of the two modes involved.

VI. CONCLUDING REMARKS

We have presented a classification scheme for two-mode squeezing transformations, based

on the structure of the real four dimensional symplectic group Sp(4,<), and the separation

of its elements into passive (compact) and active (noncompact) types. The structure and

action of the maximal compact subgroup U(2) in Sp(4,<), and the U(n)-invariant squeezing

criterion formulated elsewhere for a general n-mode system, have guided our considerations.

All our work is in the metaplectic unitary representation of Sp(4,<); and the local isomor-

phism Sp(4,<) ≈ SO(3, 2) has led to a convenient geometric picturization of the situation.

As emphasized in Section III the squeezing transformations U(P ), P ∈ Π ⊂ Sp(4,<),

do not form a subgroup of Sp(4,<). The breakup of these transformations into equivalence

classes, based on the effect of conjugation by elements of U(2) is the only natural available

classification procedure. This is because the definition of equivalence classes for any set of

objects has to be based on an equivalence relation defined on that set. Thus, we have treated

two elements P , P ′ ∈ Π as intrinsically equivalent if

P ′ = S(X, Y ) P S(X, Y )T for some X − iY ∈ U(2). (6.1)

It should however be realised that the detailed effects of action by U(P ) and U(P ′) on a

general initial two mode state ρ0, as seen in the changes caused in the variance matrix V (ρ0),

need not be identical. Since this is a subtle and important point we spell it out in detail.

Starting from a general state ρ0, action by a squeezing transformation leads to a new state
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ρ = U(P ) ρ0 U(P )−1. (6.2)

As seen in Section III, any U(P ) is expressible in terms of a representative elementU (0)(a, b)

as

U(P ) = U(S(X, Y )) U (0)(a, b) U(S(X, Y ))−1 (6.3)

for suitable X − iY ∈ U(2). Therefore we have

ρ = U(S(X, Y )) U (0)(a, b) U(S(X, Y ))−1 ρ0 U(S(X, Y )) U (0)(a, b)−1 U(S(X, Y ))−1. (6.4)

This leads by eq. (2.12) to the relation

V (ρ) = S(X, Y ) S(0)(a, b) S(X, Y )T V (ρ0) S(X, Y ) S(0)(a, b) S(X, Y )T (6.5)

between the two variance matrices. Now the first and last factors on the right hand side

here have no influence on the spectrum, and so on the least eigenvalue, of V (ρ). Therefore

the squeezed or nonsqueezed nature of ρ is actually determined by the least eigenvalue of

the matrix

S(X, Y )T V (ρ) S(X, Y ) = S(0)(a, b) S(X, Y )T V (ρ0) S(X, Y ) S(0)(a, b). (6.6)

But now the right hand side is in general dependent not only on the invariant parameters

a, b but also on X, Y . In the examples studied in Section IV, namely where ρ0 is a coherent

state or an isotropic thermal state, V (ρ0) happens to be a multiple of the identity matrix,

so that on the right hand side of eq. (6.6) the dependence on X, Y cancels. But this need

not happen in general. Thus for instance if we take for ρ0 an anisotropic thermal state

with unequal temperatures for the two modes, we have only U(1)×U(1), rather than U(2),

invariance for this ρ0; so the least eigenvalue `(V (ρ)) of V (ρ) will depend on a, b and on two

out of the four U(2) parameters present in X − iY . One can easily convince oneself that

the only situation where S(X, Y )T V (ρ0) S(X, Y ) = V (ρ0) independent of X and Y is when

V (ρ0) is a multiple of the unit matrix; and the isotropic thermal states do reproduce all such
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cases. Therefore a more detailed study of the effect of a general squeezing transformation

on initial states ρ0 with nontrivial V (ρ0) is of considerable interest.

A related important question is the following: Let us take two squeezing transformations

P1, P2 ∈ Π belonging to equivalence classes (a1, b1), (a2, b2) respectively, which could coin-

cide. The product P1P2 will in general be of the form S(X, Y ) P with S(X, Y ) ∈ U(2) and

P ∈ Π. If P belongs to the equivalence class (a, b) we wish to determine this class in terms

of P1 and P2. Using the fact Tr(P 2) = Tr((P1P2)(P1P2)
T ) and eq. (3.15) we arrive at the

following relations

2[cosh (a− b) + cosh (a+ b)] = Tr((P1P2)(P1P2)
T )

2[cosh 2(a− b) + cosh 2(a+ b)] = Tr(((P1P2)(P1P2)
T )2) (6.7)

which can be solved to find (a, b). We note here that (a, b) do depend not only upon (a1, b1)

and (a2, b2) but also on the actual elements chosen from each of these classes. So we do not

have a notion of class multiplication among these equivalence classes.

Finally we call attention to our considerations in Section V and to the need for being

able to experimentally implement or realize general passive elements of the subgroup U(2)

of Sp(4,<) for each given choice of the independent modes in a two-mode system. Once

this is achieved, for any given state we can bring out in an explicit or manifest fashion

its squeezing nature (provided it is squeezed) by altering its variance matrix and making

the least eigenvalue appear in the leading position on the diagonal. This also means that

we would be able to experimentally measure the fluctuation in the quadrature variable

isolating the least eigenvalue. As extensively discussed elsewhere, these considerations which

exploit the richness of the geometry underlying the symplectic group do not require complete

diagonalization of the variance matrix at all [10].

In the following paper we shall examine U(2)-invariant properties of two mode squeezed

states which go beyond the level of second order moments of the quadrature operators.
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FIG. 1. Equivalence classes of two-mode squeezing transformations, Caves-Schumaker (C-S)

and single mode limits, squeezed thermal region.
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FIG. 2. Mach-Zehnder Interferometer implementing arbitrary U(2) transformation on two

modes at the same frequency but differing in their direction of propagation. BS1 and BS2 are

50:50 beam splitters and thick lines are phase shifters by angles indicated. a1, a2 are the an-

nihilation operators at the input port and a′1, a′2 are the annihilation operators at the output

port

34



- - - -- - - -

- ẑ
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FIG. 3. Implementation of arbitrary SU(2) element on two modes with the same frequency

and directions of propagation, but different polarisations. Here Q1, Q2 are quarter wave plates and

H is the half wave plate. α, β, andγ are the angles which the slow axes of Q1, H and Q2 make with

the x̂ axis respectively. a1, a2 are the annihilation operators at the input port and a′1, a′2 are the

annihilation operators at the output port
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