7,252 research outputs found
Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas
Electron heating and ionization dynamics in capacitively coupled radio
frequency (RF) atmospheric pressure microplasmas operated in helium are
investigated by Particle in Cell simulations and semi-analytical modeling. A
strong heating of electrons and ionization in the plasma bulk due to high bulk
electric fields are observed at distinct times within the RF period. Based on
the model the electric field is identified to be a drift field caused by a low
electrical conductivity due to the high electron-neutral collision frequency at
atmospheric pressure. Thus, the ionization is mainly caused by ohmic heating in
this "Omega-mode". The phase of strongest bulk electric field and ionization is
affected by the driving voltage amplitude. At high amplitudes, the plasma
density is high, so that the sheath impedance is comparable to the bulk
resistance. Thus, voltage and current are about 45{\deg} out of phase and
maximum ionization is observed during sheath expansion with local maxima at the
sheath edges. At low driving voltages, the plasma density is low and the
discharge becomes more resistive resulting in a smaller phase shift of about
4{\deg}. Thus, maximum ionization occurs later within the RF period with a
maximum in the discharge center. Significant analogies to electronegative low
pressure macroscopic discharges operated in the Drift-Ambipolar mode are found,
where similar mechanisms induced by a high electronegativity instead of a high
collision frequency have been identified
Effects of the Zanzibar School-Based Deworming Program on Iron Status of Children.
We evaluated the effects of the Zanzibar school-based deworming program on the iron status of primary school children. Parasitologic and nutritional assessments were carried out at baseline, 6 mo, and 12 mo in 4 nonprogram schools (n = 1002), 4 schools in which students received twice-yearly deworming (n = 952), and 4 schools in which students received thrice-yearly deworming (n = 970) with 500 mg generic mebendazole. Schools were randomly selected for evaluation and allocated to program groups. Relative to no treatment, thrice-yearly deworming caused significant decreases in protoporphyrin concentrations and both deworming regimens caused marginally significant increases in serum ferritin concentrations. The average annual changes in protoporphyrin concentrations were -5.9 and -23.5 micromol/mol heme in the control and thrice-yearly deworming groups, respectively (P < 0.001). The average changes in ferritin concentration were 2.8 and 4.5 microg/L, respectively (P = 0.07). Deworming had no effect on annual hemoglobin change or prevalence of anemia. However, the relative risk of severe anemia (hemoglobin < 70 g/L) was 0.77 (95% confidence limits: 0.39, 1.51) in the twice-yearly deworming group and 0.45 (0.19, 1.08) in the thrice-yearly deworming group. The effects on prevalence of high protoporphyrin values and incidence of moderate-to-severe anemia (hemoglobin < 90 g/L) were significantly greater in children with > 2000 hookworm eggs/g feces at baseline. We estimate that this deworming program prevented 1260 cases of moderate-to-severe anemia and 276 cases of severe anemia in a population of 30,000 schoolchildren in 1 y. Where hookworm is heavily endemic, deworming programs can improve iron status and prevent moderate and severe anemia, but deworming may be needed at least twice yearly
Connecting Angular Momentum and Galactic Dynamics: The complex Interplay between Spin, Mass, and Morphology
The evolution and distribution of the angular momentum of dark matter (DM)
halos have been discussed in several studies over the past decades. In
particular, the idea arose that angular momentum conservation should allow to
infer the total angular momentum of the entire DM halo from measuring the
angular momentum of the baryonic component, which is populating the center of
the halo, especially for disk galaxies. To test this idea and to understand the
connection between the angular momentum of the DM halo and its galaxy, we use
the Magneticum simulations. We successfully produce populations of spheroidal
and disk galaxies self-consistently. Thus, we are able to study the dependence
of galactic properties on their morphology. We find that (1) the specific
angular momentum of stars in disk and spheroidal galaxies as a function of
their stellar mass compares well with observational results; (2) the specific
angular momentum of the stars in disk galaxies is slightly smaller compared to
the specific angular momentum of the cold gas, in good agreement with
observations; (3) simulations including the baryonic component show a dichotomy
in the specific stellar angular momentum distribution when splitting the
galaxies according to their morphological type (this dichotomy can also be seen
in the spin parameter, where disk galaxies populate halos with slightly larger
spin compared to spheroidal galaxies); (4) disk galaxies preferentially
populate halos in which the angular momentum vector of the DM component in the
central part shows a better alignment to the angular momentum vector of the
entire halo; and (5) the specific angular momentum of the cold gas in disk
galaxies is approximately 40 percent smaller than the specific angular momentum
of the total DM halo and shows a significant scatter.Comment: 25 pages, accepted by ApJ, www.magneticum.or
Hybrid protoneutron stars with the MIT bag model
We study the hadron-quark phase transition in the interior of protoneutron
stars. For the hadronic sector, we use a microscopic equation of state
involving nucleons and hyperons derived within the finite-temperature
Brueckner-Bethe-Goldstone many-body theory, with realistic two-body and
three-body forces. For the description of quark matter, we employ the MIT bag
model both with a constant and a density-dependent bag parameter. We calculate
the structure of protostars with the equation of state comprising both phases
and find maximum masses below 1.6 solar masses. Metastable heavy hybrid
protostars are not found.Comment: 12 pages, 9 figures submitted to Phys. Rev.
Tunable sub-luminal propagation of narrowband x-ray pulses
Group velocity control is demonstrated for x-ray photons of 14.4 keV energy
via a direct measurement of the temporal delay imposed on spectrally narrow
x-ray pulses. Sub-luminal light propagation is achieved by inducing a steep
positive linear dispersion in the optical response of Fe M\"ossbauer
nuclei embedded in a thin film planar x-ray cavity. The direct detection of the
temporal pulse delay is enabled by generating frequency-tunable spectrally
narrow x-ray pulses from broadband pulsed synchrotron radiation. Our
theoretical model is in good agreement with the experimental data.Comment: 8 pages, 4 figure
Recommended from our members
Paradigm change in hydrogel sensor manufacturing: From recipe-driven to specification-driven process optimization
The volume production of industrial hydrogel sensors lacks a quality-assuring manufacturing technique for thin polymer films with reproducible properties. Overcoming this problem requires a paradigm change from the current recipe-driven manufacturing process to a specification-driven one. This requires techniques to measure quality-determining hydrogel film properties as well as tools and methods for the control and optimization of the manufacturing process. In this paper we present an approach that comprehensively addresses these issues. The influence of process parameters on the hydrogel film properties and the resulting sensor characteristics have been assessed by means of batch manufacturing tests and the application of several measurement techniques. Based on these investigations, we present novel methods and a tool for the optimization of the cross-linking process step, with the latter being crucial for the sensor sensitivity. Our approach is applicable to various sensor designs with different hydrogels. It has been successfully tested with a sensor solution for surface technology based on PVA/PAA hydrogel as sensing layer and a piezoelectric thickness shear resonator as transducer. Finally, unresolved issues regarding the measurement of hydrogel film parameters are outlined for future research
Paradigm change in hydrogel sensor manufacturing: from recipe-driven to specification-driven process optimization
The volume production of industrial hydrogel sensors lacks a quality-assuring
manufacturing technique for thin polymer films with reproducible properties.
Overcoming this problem requires a paradigm change from the current
recipe-driven manufacturing process to a specification-driven one. This
requires techniques to measure quality-determining hydrogel film properties
as well as tools and methods for the control and optimization of the
manufacturing process. In this paper we present an approach that
comprehensively addresses these issues. The influence of process parameters
on the hydrogel film properties and the resulting sensor characteristics have
been assessed by means of batch manufacturing tests and the application of
several measurement techniques. Based on these investigations, we present
novel methods and a tool for the optimization of the
cross-linking process step, with the latter being crucial for the sensor
sensitivity. Our approach is applicable to various sensor designs with
different hydrogels. It has been successfully tested with a sensor solution
for surface technology based on PVA/PAA hydrogel as sensing layer and a
piezoelectric thickness shear resonator as transducer. Finally, unresolved
issues regarding the measurement of hydrogel film parameters are outlined for
future research
- …