1,138 research outputs found

    Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 107, 041105 (2015) and may be found at https://doi.org/10.1063/1.4927429.We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g(2)(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize the quantum optical properties of the single-photon emission in terms of photon indistinguishability.BMBF, 03V0630, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle für die Quanteninformationstechnologie (QSOURCE)DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeDFG, 192635911, GRK 1782: Funktionalisierung von HalbleiternDFG, 223848855, SFB 1083: Struktur und Dynamik innerer Grenzfläche

    Multiscale Kinetic Monte-Carlo for Simulating Epitaxial Growth

    Full text link
    We present a fast Monte-Carlo algorithm for simulating epitaxial surface growth, based on the continuous-time Monte-Carlo algorithm of Bortz, Kalos and Lebowitz. When simulating realistic growth regimes, much computational time is consumed by the relatively fast dynamics of the adatoms. Continuum and continuum-discrete hybrid methods have been developed to approach this issue; however in many situations, the density of adatoms is too low to efficiently and accurately simulate as a continuum. To solve the problem of fast adatom dynamics, we allow adatoms to take larger steps, effectively reducing the number of transitions required. We achieve nearly a factor of ten speed up, for growth at moderate temperatures and large D/F.Comment: 7 pages, 6 figures; revised text, accepted by PR

    The components of the social environment of a modern university affecting on a personal professional development: the experience of foreign countries

    Get PDF
    This paper discusses the influence of the social environment of the university on the process of students’ professional development. The paper reveals the concept of «the social environment of the university», describes the main elements existed in higher education. The aim of the study is to identify the components of the social environment of the university affecting the professional development and the formation of the student’s personality in higher education. Based on the analysis of foreign universities some components of the social environment of the university have been identified: value-oriented, relational, informational and spatial. The paper is aimed at sociologists, teachers, and psychological researchers, involved in the professional development of specialists in higher educatio

    Disrupting the spatio-temporal symmetry of the electron dynamics in atmospheric pressure plasmas by voltage waveform tailoring

    Get PDF
    Single frequency, geometrically symmetric Radio-Frequency (RF) driven atmospheric pressure plasmas exhibit temporally and spatially symmetric patterns of electron heating, and consequently, charged particle densities and fluxes. Using a combination of phase-resolved optical emission spectroscopy and kinetic plasma simulations, we demonstrate that tailored voltage waveforms consisting of multiple RF harmonics induce targeted disruption of these symmetries. This confines the electron heating to small regions of time and space and enables the electron energy distribution function to be tailored

    Supernova PTF12glz: a possible shock breakout driven through an aspherical wind

    Get PDF
    We present visible-light and ultraviolet (UV) observations of the supernova PTF12glz. The SN was discovered and monitored in near-UV and R bands as part of a joint GALEX and Palomar Transient Factory campaign. It is among the most energetic Type IIn supernovae observed to date (~10^51erg). If the radiated energy mainly came from the thermalization of the shock kinetic energy, we show that PTF12glz was surrounded by ~1 solar mass of circumstellar material (CSM) prior to its explosive death. PTF12glz shows a puzzling peculiarity: at early times, while the freely expanding ejecta are presumably masked by the optically thick CSM, the radius of the blackbody that best fits the observations grows at ~8000km/s. Such a velocity is characteristic of fast moving ejecta rather than optically thick CSM. This phase of radial expansion takes place before any spectroscopic signature of expanding ejecta appears in the spectrum and while both the spectroscopic data and the bolometric luminosity seem to indicate that the CSM is optically thick. We propose a geometrical solution to this puzzle, involving an aspherical structure of the CSM around PTF12glz. By modeling radiative diffusion through a slab of CSM, we show that an aspherical geometry of the CSM can result in a growing effective radius. This simple model also allows us to recover the decreasing blackbody temperature of PTF12glz. SLAB-Diffusion, the code we wrote to model the radiative diffusion of photons through a slab of CSM and evaluate the observed radius and temperature, is made available on-line.Comment: Sumbitted to ApJ. Comments are welcom

    Master Equation for the Motion of a Polarizable Particle in a Multimode Cavity

    Full text link
    We derive a master equation for the motion of a polarizable particle weakly interacting with one or several strongly pumped cavity modes. We focus here on massive particles with complex internal structure such as large molecules and clusters, for which we assume a linear scalar polarizability mediating the particle-light interaction. The predicted friction and diffusion coefficients are in good agreement with former semiclassical calculations for atoms and small molecules in weakly pumped cavities, while the current rigorous quantum treatment and numerical assessment sheds a light on the feasibility of experiments that aim at optically manipulating beams of massive molecules with multimode cavities.Comment: 30 pages, 5 figure

    Effects of LED lighting on Nannochloropsis oceanica grown in outdoor raceway ponds

    Get PDF
    Growth in most microalgal mass cultivation systems is light-limited, particularly in raceway ponds (RWP) where the light path is higher. Artificial lighting can be a promising solution to diminishing dark zones and enhance microalgal productivity. Therefore, our goal was to prevent the cell shift from photosynthesis to a respiration-only stage by resorting to LED illumination. Nannochloropsis oceanica cultures were accordingly grown out-doors in a preliminary small-scaleexperiment, followed by pilot-scale trials. In the former, three 3.0-m(2) RWP were set up under three distinct conditions: 1) without LEDs (control); 2) LEDs turned on during the night; and 3) LEDs turned on for 24 h. In the pilot-scale trial, one of two 28.9-m(2) pilot-scale RWPs was coupled to the best LED setup - determined in the small-scale preliminary experiment - using the same light intensity (normal mode) and half of the intensity (economy mode), with the second RWP serving as a control. In the preliminary experiment, the use of LEDs for 24 h was deemed as not helpful during daytime, before the culture reached asymptotic to 0.5 g DW L-1 - when dark zones appeared during the day due to sunlight attenuation in the 0.1 m-deep cultures. Overall, use of LEDs increased biomass growth chiefly by increasing nighttime productivities - materialized in higher chlorophyll, protein, and carbohydrate productivities in LED-lit cultures. A higher impact of LED lighting was observed under lower sunlight irradiances. A preliminary economic analysis indicates that use of LEDs in RWPs outdoors should be considered for high-value metabolites only.info:eu-repo/semantics/publishedVersio
    corecore