1,979 research outputs found

    Prefrontal gamma oscillations encode tonic pain in humans

    Get PDF
    Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain

    Lord of the Rings: A Kinematic Distance to Circinus X-1 from a Giant X-Ray Light Echo

    Get PDF
    Circinus X-1 exhibited a bright X-ray flare in late 2013. Follow-up observations with Chandra and XMM-Newton from 40 to 80 days after the flare reveal a bright X-ray light echo in the form of four well-defined rings with radii from 5 to 13 arcminutes, growing in radius with time. The large fluence of the flare and the large column density of interstellar dust towards Circinus X-1 make this the largest and brightest set of rings from an X-ray light echo observed to date. By deconvolving the radial intensity profile of the echo with the MAXI X-ray lightcurve of the flare we reconstruct the dust distribution towards Circinus X-1 into four distinct dust concentrations. By comparing the peak in scattering intensity with the peak intensity in CO maps of molecular clouds from the Mopra Southern Galactic Plane CO Survey we identify the two innermost rings with clouds at radial velocity ~ -74 km/s and ~ -81 km/s, respectively. We identify a prominent band of foreground photoelectric absorption with a lane of CO gas at ~ -32 km/s. From the association of the rings with individual CO clouds we determine the kinematic distance to Circinus X-1 to be DCirX1=9.41.0+0.8D_{Cir X-1} = 9.4^{+0.8}_{-1.0} kpc. This distance rules out earlier claims of a distance around 4 kpc, implies that Circinus X-1 is a frequent super-Eddington source, and places a lower limit of Γ22\Gamma \gtrsim 22 on the Lorentz factor and an upper limit of θjet3\theta_{jet} \lesssim 3^{\circ} on the jet viewing angle.Comment: 20 pages, 21 figures, Astrophysical Journal, in prin

    Laser-Spectroscopic Investigation of OH-Radical Concentrations in the Exhaust Plane of Jet Engines

    Full text link
    Hydroxyl radical (OH) emissions are relevant for oxidation reactions in the post flame chemistry of exhaust gases emitted from jet engines. No direct measurements of OH concentrations are available to date due to the low abundance and the short lifetime of this radical species. The first application of a combined technique based on Raman scattering and laser_induced fluorescence (LIF) spectrometry is presented here for measurements in the exhaust gases of a commercial jet engine operated in a test rig. From the measurements, upper limits for OH concentrations in the exit plane were determined in the range of 90 ppbv for take off and 80 ppbv for ap_idle. The values are significantly below the predictions of model calculations based on HONO and HNO3 in_flight concentration measurements presented recently. Possibilities for further increase of the detection sensitivity for OH are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86750/1/Sick34.pd

    COVID-19 Surveillance Testing of Healthcare Personnel Drives Universal Masking Practice

    Get PDF
    Health Care Professionals (HCP) are at increased risk of COVID-19 infection due to the unpredictable clinical presentation of COVID-19 disease, limited SARS-CoV-2 testing, personal protective equipment (PPE) shortages, and the inherent inability to distance from patients. Infected HCP may infect others including coworkers leading to a simultaneous increase of number of infections and decreased availability of HCP in a community. [1] Due to PPE shortages, many healthcare systems have faced difficult decisions regarding utilization of PPE to protect HCP and patients and the communities they serve. We describe Norton Healthcare’s success utilizing surveillance COVID-19 testing of HCP to inform the decision to increase the use of PPE during a PPE shortage in the form of universal masking. Many healthcare systems could benefit from surveillance COVID-19 testing of HCP and universal masking of HCP

    Single Transfer-Excitation Resonance Observed Via the Two-Photon Decay in He-like Ge³⁰⁺

    Get PDF
    We measured the 2E1 decay of the 1s2s 1S0 →1s2 1S0 transition in He-like germanium for 12- to 19-MeV/u Ge31+ +H2 collisions. The resonant population of the 2s2p 1P1 state by transfer excitation was isolated due to its cascading to the 1s2s 1S0 state. The experimental cross sections compare well with calculations using dielectronic recombination rates. The method gives the unique possibility to populate selectively the 1S0 state in heavy He-like ions

    Swift monitoring of Cygnus X-2: investigating the NUV-X-ray connection

    Full text link
    The neutron star X-ray binary (NSXRB) Cygnus X-2 was observed by the Swift satellite 51 times over a 4 month period in 2008 with the XRT, UVOT, and BAT instruments. During this campaign, we observed Cyg X-2 in all three branches of the Z track (horizontal, normal, and flaring branches). We find that the NUV emission is uncorrelated with the soft X-ray flux detected with the XRT, and is anticorrelated with the BAT X-ray flux and the hard X-ray color. The observed anticorrelation is inconsistent with simple models of reprocessing as the source of the NUV emission. The anticorrelation may be a consequence of the high inclination angle of Cyg X-2, where NUV emission is preferentially scattered by a corona that expands as the disk is radiatively heated. Alternatively, if the accretion disk thickens as Cyg X-2 goes down the normal branch toward the flaring branch, this may be able to explain the observed anticorrelation. In these models the NUV emission may not be a good proxy for m˙\dot m in the system. We also discuss the implications of using Swift/XRT to perform spectral modeling of the continuum emission of NSXRBs.Comment: 10 pages, 8 figures. ApJ Accepte

    Competing density-wave orders in a one-dimensional hard-boson model

    Get PDF
    We describe the zero-temperature phase diagram of a model of bosons, occupying sites of a linear chain, which obey a hard-exclusion constraint: any two nearest-neighbor sites may have at most one boson. A special case of our model was recently proposed as a description of a ``tilted'' Mott insulator of atoms trapped in an optical lattice. Our quantum Hamiltonian is shown to generate the transfer matrix of Baxter's hard-square model. Aided by exact solutions of a number of special cases, and by numerical studies, we obtain a phase diagram containing states with long-range density-wave order with period 2 and period 3, and also a floating incommensurate phase. Critical theories for the various quantum phase transitions are presented. As a byproduct, we show how to compute the Luttinger parameter in integrable theories with hard-exclusion constraints.Comment: 16 page

    Function-related replacement of bacterial siderophore pathways

    Get PDF
    © The Author(s) 2018. Bacterial genomes are rife with orphan biosynthetic gene clusters (BGCs) associated with secondary metabolism of unrealized natural product molecules. Often up to a tenth of the genome is predicted to code for the biosynthesis of diverse metabolites with mostly unknown structures and functions. This phenomenal diversity of BGCs coupled with their high rates of horizontal transfer raise questions about whether they are really active and beneficial, whether they are neutral and confer no advantage, or whether they are carried in genomes because they are parasitic or addictive. We previously reported that Salinispora bacteria broadly use the desferrioxamine family of siderophores for iron acquisition. Herein we describe a new and unrelated group of peptidic siderophores called salinichelins from a restricted number of Salinispora strains in which the desferrioxamine biosynthesis genes have been lost. We have reconstructed the evolutionary history of these two different siderophore families and show that the acquisition and retention of the new salinichelin siderophores co-occurs with the loss of the more ancient desferrioxamine pathway. This identical event occurred at least three times independently during the evolution of the genus. We surmise that certain BGCs may be extraneous because of their functional redundancy and demonstrate that the relative evolutionary pace of natural pathway replacement shows high selective pressure against retention of functionally superfluous gene clusters
    corecore