1,225 research outputs found

    Technical Note: A simple method for air–sea gas exchange measurements in mesocosms and its application in carbon budgeting

    Get PDF
    Mesocosms as large experimental vessels principally provide the opportunity of performing elemental budget calculations e.g. to derive net biological turnover rates. However, the system is in most cases not closed at the water surface and gases can exchange with the atmosphere. Previous attempts to budget carbon pools in mesocosms relied on educated guesses concerning the exchange of CO2 with the atmosphere. Nevertheless, net primary production rates derived from these budget calculations were, despite large uncertainties in air/sea gas exchange, often more reasonable than cumulative extrapolations of bioassays. While bioassays have limitations representing the full spectrum of trophic levels and abiotic conditions inside the mesocosms, calculating dissolved inorganic carbon uptake inside the mesocosms has the potential to deliver net community production rates representative of the enclosed system. Here, we present a simple method for precise determination of air/sea gas exchange velocities in mesocosms using N2O as a deliberate tracer. Beside the application for carbon budgeting, exchange velocities can be used to calculate exchange rates of any gas of known concentration, e.g. to calculate aquatic production rates of climate relevant trace gases. Using an arctic (Kiel Off Shore Mesocosms for future Ocean Simulation) mesocosm experiment as an exemplary dataset, it is shown that application of the presented method largely improves accuracy of carbon budget estimates. Methodology of manipulation, measurement, data processing and conversion to CO2 fluxes are explained. A theoretical discussion of prerequisites for precise gas exchange measurements provides a guideline for the applicability of the method under various experimental conditions

    The modulating effect of light intensity on the response of the coccolithophore Gephyrocapsa oceanicato ocean acidification

    Get PDF
    Global change leads to a multitude of simultaneous modifications in the marine realm among which shoaling of the upper mixed layer, leading to enhanced surface layer light intensities, as well as increased carbon dioxide (CO2) concentration are some of the most critical environmental alterations for phytoplankton. In this study, we investigated the responses of growth, photosynthetic carbon fixation and calcification of the coccolithophore Gephyrocapsa oceanica to elevated inline image (51 Pa, 105 Pa, and 152 Pa) (1 Pa ≈ 10 μatm) at a variety of light intensities (50–800 μmol photons m−2 s−1). By fitting the light response curve, our results showed that rising inline image reduced the maximum rates for growth, photosynthetic carbon fixation and calcification. Increasing light intensity enhanced the sensitivity of these rate responses to inline image, and shifted the inline image optima toward lower levels. Combining the results of this and a previous study (Sett et al. 2014) on the same strain indicates that both limiting low inline image and inhibiting high inline image levels (this study) induce similar responses, reducing growth, carbon fixation and calcification rates of G. oceanica. At limiting low light intensities the inline image optima for maximum growth, carbon fixation and calcification are shifted toward higher levels. Interacting effects of simultaneously occurring environmental changes, such as increasing light intensity and ocean acidification, need to be considered when trying to assess metabolic rates of marine phytoplankton under future ocean scenarios

    Seasonal Variability of Calcium Carbonate Precipitation and Dissolution in Shallow Coral Reef Sediments

    Get PDF
    Shallow, permeable calcium carbonate (CaCO3) sediments make up a large proportion of the benthic cover on coral reefs and account for a large fraction of the standing stock of CaCO3. There have been a number of laboratory, mesocosm, and in situ studies examining shallow sediment metabolism and dissolution, but none of these have considered seasonal variability. Advective benthic chambers were used to measure in situ net community calcification (NCC) rates of CaCO3 sediments on Heron Island, Australia (Great Barrier Reef) over an annual cycle. Sediments were, on average, net precipitating during the day and net dissolving at night throughout the year. Night dissolution rates (−NCCNIGHT) were highest in the austral autumn and lowest in the austral winter driven by changes in respiration (R) and to a lesser extent temperature and Ωarag/pH. Similarly, precipitation during the day (+NCCDAY) was highest in March and lowest in winter, driven primarily by benthic net primary production (NPP) and temperature. On average, sediments were net precipitating over a diel cycle (NCC24h) but shifted to net dissolving in July and December. This shift was largely caused by the differential effects of seasonal cycles in organic metabolism and carbonate chemistry on NCCDAY and NCCNIGHT. The results from this study highlight the large variability in sediment CaCO3 dynamics and the need to include repeated measurements over different months and seasons, particularly in shallow reef systems that can experience large swings in light, temperature, and carbonate chemistry

    Technical Note: The determination of enclosed water volume in large flexible-wall mesocosms "KOSMOS"

    Get PDF
    The volume of water enclosed inside flexible-wall mesocosm bags is hard to estimate using geometrical calculations and can be strongly variable among bags of the same dimensions. Here we present a method for precise water volume determination in mesocosms using salinity as a tracer. Knowledge of the precise volume of water enclosed allows establishment of exactly planed treatment concentrations and calculation of elemental budgets

    Do bacteria thrive when the ocean acidifies? Results from an off-­shore mesocosm study

    Get PDF
    Marine bacteria are the main consumers of the freshly produced organic matter. In order to meet their carbon demand, bacteria release hydrolytic extracellular enzymes that break down large polymers into small usable subunits. Accordingly, rates of enzymatic hydrolysis have a high potential to affect bacterial organic matter recycling and carbon turnover in the ocean. Many of these enzymatic processes were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years with so-far unknown consequences for microbial physiology, organic matter cycling and marine biogeochemistry. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine 25m-long Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging from ca. 280 to 3000 µatm by stepwise addition of CO2 saturated seawater. After CO2 addition, samples were taken every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During both phytoplankton blooms, more transparent exopolymer particles were formed in the high pCO2 mesocosms. The total and cell-specific activities of the protein-degrading enzyme leucine aminopeptidase were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean

    Effects of ocean acidification on the biogenic composition of the sea-surface microlayer: Results from a mesocosm study

    Get PDF
    The sea-surface microlayer (SML) is the ocean's uppermost boundary to the atmosphere and in control of climate relevant processes like gas exchange and emission of marine primary organic aerosols (POA). The SML represents a complex surface film including organic components like polysaccharides, proteins, and marine gel particles, and harbors diverse microbial communities. Despite the potential relevance of the SML in ocean-atmosphere interactions, still little is known about its structural characteristics and sensitivity to a changing environment such as increased oceanic uptake of anthropogenic CO2. Here we report results of a large-scale mesocosm study, indicating that ocean acidification can affect the abundance and activity of microorganisms during phytoplankton blooms, resulting in changes in composition and dynamics of organic matter in the SML. Our results reveal a potential coupling between anthropogenic CO2 emissions and the biogenic properties of the SML, pointing to a hitherto disregarded feedback process between ocean and atmosphere under climate change

    Stimulated Bacterial Growth under Elevated p Co2: Results from an Off-Shore Mesocosm Study

    Get PDF
    Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5–10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean

    Ocean acidification does not alter grazing in the calanoid copepods Calanus finmarchicus and Calanus glacialis

    Get PDF
    It is currently under debate whether organisms that regulate their acid–base status under environmental hypercapnia demand additional energy. This could impair animal fitness, but might be compensated for via increased ingestion rates when food is available. No data are yet available for dominant Calanus spp. from boreal and Arctic waters. To fill this gap, we incubated Calanus glacialis at 390, 1120, and 3000 µatm for 16 d with Thalassiosira weissflogii (diatom) as food source on-board RV Polarstern in Fram Strait in 2012. Every 4 d copepods were subsampled from all CO2 treatments and clearance and ingestion rates were determined. During the SOPRAN mesocosm experiment in Bergen, Norway, 2011, we weekly collected Calanus finmarchicus from mesocosms initially adjusted to 390 and 3000 µatm CO2 and measured grazing at low and high pCO2. In addition, copepods were deep frozen for body mass analyses. Elevated pCO2 did not directly affect grazing activities and body mass, suggesting that the copepods did not have additional energy demands for coping with acidification, neither during long-term exposure nor after immediate changes in pCO2. Shifts in seawater pH thus do not seem to challenge these copepod species

    Between- and within-population variations in thermal reaction norms of the coccolithophore Emiliania huxleyi

    Get PDF
    Thermal reaction norms for growth rates of six Emiliania huxleyi isolates originating from the central Atlantic (Azores, Portugal) and five isolates from the coastal North Atlantic (Bergen, Norway) were assessed. We used the template mode of variation model to decompose variations in growth rates into modes of biological interest: vertical shift, horizontal shift, and generalist–specialist variation. In line with the actual habitat conditions, isolates from Bergen (Bergen population) grew well at lower temperatures, and isolates from the Azores (Azores population) performed better at higher temperatures. The optimum growth temperature of the Azores population was significantly higher than that of the Bergen population. Neutral genetic differentiation was found between populations by microsatellite analysis. These findings indicate that E. huxleyi populations are adapted to local temperature regimes. Next to between-population variation, we also found variation within populations. Genotype-by-environment interactions resulted in the most pronounced phenotypic differences when isolates were exposed to temperatures outside the range they naturally encounter. Variation in thermal reaction norms between and within populations emphasizes the importance of using more than one isolate when studying the consequences of global change on marine phytoplankton. Phenotypic plasticity and standing genetic variation will be important in determining the potential of natural E. huxleyi populations to cope with global climate change

    CO2 increases 14C-primary production in an Arctic plankton community

    Get PDF
    Responses to ocean acidification in plankton communities were studied during a CO2-enrichment experiment in the Arctic Ocean, accomplished from June to July 2010 in Kongsfjorden, Svalbard (78°56′ 2′′ N, 11°53′ 6′′ E). Enclosed in 9 mesocosms (volume: 43.9–47.6 m3), plankton was exposed to CO2 concentrations, ranging from glacial to projected mid-next-century levels. Fertilization with inorganic nutrients at day 13 of the experiment supported the accumulation of phytoplankton biomass, as indicated by two periods of high chl a concentration. This study tested for CO2 sensitivities in primary production (PP) of particulate organic carbon (PPPOC) and of dissolved organic carbon (PPDOC). Therefore, 14C-bottle incubations (24 h) of mesocosm samples were performed at 1 m depth receiving about 60% of incoming radiation. PP for all mesocosms averaged 8.06 ± 3.64 μmol C L−1 d−1 and was slightly higher than in the outside fjord system. Comparison between mesocosms revealed significantly higher PPPOC at elevated compared to low pCO2 after nutrient addition. PPDOC was significantly higher in CO2-enriched mesocosms before as well as after nutrient addition, suggesting that CO2 had a direct influence on DOC production. DOC concentrations inside the mesocosms increased before nutrient addition and more in high CO2 mesocosms. After addition of nutrients, however, further DOC accumulation was negligible and not significantly different between treatments, indicating rapid utilization of freshly produced DOC. Bacterial biomass production (BP) was coupled to PP in all treatments, indicating that 3.5 ± 1.9% of PP or 21.6 ± 12.5% of PPDOC provided on average sufficient carbon for synthesis of bacterial biomass. During the later course of the bloom, the response of 14C-based PP rates to CO2 enrichment differed from net community production (NCP) rates that were also determined during this mesocosm campaign. We conclude that the enhanced release of labile DOC during autotrophic production at high CO2 exceedingly stimulated activities of heterotrophic microorganisms. As a consequence, increased PP induced less NCP, as suggested earlier for carbon-limited microbial systems in the Arctic
    • …
    corecore