2,818 research outputs found

    Measuring rhizosphere hydraulic properties: impact of root mucilage on soil hydraulic conductivity and water retention curve

    Get PDF
    Roots are hypothesized to alter rhizosphere hydraulic properties by release of mucilage. This mechanism is expected to have strong implications for root water uptake under drought conditions. Direct measurement of rhizosphere hydraulic properties is hindered by the dynamic nature of the components involved; root hydraulics change with ontology; mucilage production, composition and diffusion are not constant; soil water content changes. An experimental approach was developed which enables to simultaneously measure hydraulic conductivity and apparent water retention curve in a radial flow setup, mimicking the flow geometry around roots. The method consists of extracting water at constant suction via a suction cup, which is centrally placed in a soil filled cylinder and recording water outflow and soil matric potential. In the past, the setup was tested for homogeneous distribution of a model substance (calcium-polygalacturonic acid) frequently used to mimic the properties of root mucilage. Now the system has been applied to investigate the impact of plant root mucilage collected from white lupine. As the system allows a local placement of mucilage treated soil around the suction cup to simulate a ‘rhizosphere’ between bulk soil and suction cup, it can be set up with the limited quantity of natural plant root mucilage available from direct collection. Quartz sand has been treated with lupine root mucilage by mixing liquid mucilage with dry sand at a concentration of 2 mg mucilage per gram soil. Treated sand has been placed as a circular layer with 3.75 mm thickness around the suction cup, which has a radius of 1.25 mm. All around this layer, the device has been filled up with untreated sand. The radius of the whole device was 25 mm. To determine soil hydraulic conductivity we inversely fitted the outflow curves and soil matric potential by solving the Richards’ equation in radial coordinates. Water outflow curves show a significant impact of lupine mucilage on water flow rate – it slows water flow from bulk soil to suction cup. Currently modelling is in process to determine soil hydraulic conductivity and water retention curves. Decreasing hydraulic conductivities and increasing water retention due to lupine mucilage treatment are expected

    Grazing Endophyte Infested Tall Fescue and Changes in Bovine Blood Components and Gain

    Get PDF
    Tall fescue (Festuca arundinacea) is utilized on more than 15 million ha of pasture in the eastern USA and over 80% of the plants in this area are infested with the endophyte Neotyphodium coenophialum. Tall fescue toxicosis results from consumption of the infested (E+) grass host and is an important problem that causes considerable economic loss to producers. However, the agronomic attributes of tall fescue make it an attractive forage because of its ability to withstand cool temperatures, drought, poor soil conditions and intensive defoliation. There is need to understand mechanisms of animal physiology that are affected by the alkaloids produced by the endophyte/grass association. Blood serum samples were collected from steers (Bos taurus) grazing either E+ or endophyte free (E-) tall fescue in spring and summer during three consecutive years and were related to animal performance. Consistent and significant changes associated with E+ tall fescue were noted for daily gain, prolactin, albumin/globulin ratio, alanine aminotransferase, cholesterol, creatinine, globulin, total bilirubin, total serum protein, copper, red blood cells, mean corpuscular volume, mean corpuscular hemoglobin, and eosinophils. Thus, repeatable changes that occur in serum biochemical and blood cellular values of cattle grazing E+ tall fescue were identified and will aid in understanding the pathogenesis of the toxicosis

    Anomalous Periodicity of the Current-Phase Relationship of Grain-Boundary Josephson Junctions in High-Tc Superconductors

    Full text link
    The current-phase relation (CPR) for asymmetric 45 degree Josephson junctions between two d-wave superconductors has been predicted to exhibit an anomalous periodicity. We have used the single-junction interferometer to investigate the CPR for this kind of junctions in YBCO thin films. Half-fluxon periodicity has been experimentally found, providing a novel source of evidence for the d-wave symmetry of the pairing state of the cuprates.Comment: 4 pages, 5 figure

    Tema Con Variazioni: Quantum Channel Capacity

    Full text link
    Channel capacity describes the size of the nearly ideal channels, which can be obtained from many uses of a given channel, using an optimal error correcting code. In this paper we collect and compare minor and major variations in the mathematically precise statements of this idea which have been put forward in the literature. We show that all the variations considered lead to equivalent capacity definitions. In particular, it makes no difference whether one requires mean or maximal errors to go to zero, and it makes no difference whether errors are required to vanish for any sequence of block sizes compatible with the rate, or only for one infinite sequence.Comment: 32 pages, uses iopart.cl

    Two-phonon scattering of magnetorotons in fractional quantum Hall liquids

    Get PDF
    We study the phonon-assisted process of dissociation of a magnetoroton, in a fractional quantum Hall liquid, into an unbound pair of quasiparticles. Whilst the dissociation is forbidden to first order in the electron-phonon interaction, it can occur as a two-phonon process. Depending on the value of final separation between the quasiparticles, the dissociation is either a single event involving absorption of one phonon and emission of another phonon of similar energy, or a two-phonon diffusion of a quasiexciton in momentum space. The dependence of the magnetoroton dissociation time on the filling factor of the incompressible liquid is found.Comment: 4 pages, no figure

    The direct evaluation of attosecond chirp from a streaking measurement

    Full text link
    We derive an analytical expression, from classical electron trajectories in a laser field, that relates the breadth of a streaked photoelectron spectrum to the group-delay dispersion of an isolated attosecond pulse. Based on this analytical expression, we introduce a simple, efficient and robust procedure to instantly extract the attosecond pulse's chirp from the streaking measurement.Comment: 4 figure

    Four-Hundred-and-Ninety-Million-Year Record of Bacteriogenic Iron Oxide Precipitation at Sea-Floor Hydrothermal Vents

    Get PDF
    Fe oxide deposits are commonly found at hydrothermal vent sites at mid-ocean ridge and back-arc sea floor spreading centers, seamounts associated with these spreading centers, and intra-plate seamounts, and can cover extensive areas of the seafloor. These deposits can be attributed to several abiogenic processes and commonly contain micron-scale filamentous textures. Some filaments are cylindrical casts of Fe oxyhydroxides formed around bacterial cells and are thus unquestionably biogenic. The filaments have distinctive morphologies very like structures formed by neutrophilic Fe oxidizing bacteria. It is becoming increasingly apparent that Fe oxidizing bacteria have a significant role in the formation of Fe oxide deposits at marine hydrothermal vents. The presence of Fe oxide filaments in Fe oxides is thus of great potential as a biomarker for Fe oxidizing bacteria in modern and ancient marine hydrothermal vent deposits. The ancient analogues of modern deep-sea hydrothermal Fe oxide deposits are jaspers. A number of jaspers, ranging in age from the early Ordovician to late Eocene, contain abundant Fe oxide filamentous textures with a wide variety of morphologies. Some of these filaments are like structures formed by modern Fe oxidizing bacteria. Together with new data from the modern TAG site, we show that there is direct evidence for bacteriogenic Fe oxide precipitation at marine hydrothermal vent sites for at least the last 490 Ma of the Phanerozoic

    Parallel Measurement and Modeling of Transport in the Darht II Beamline on ETA II

    Full text link
    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach
    • …
    corecore