145 research outputs found

    Tracheotomy does not affect reducing sedation requirements of patients in intensive care – a retrospective study

    Get PDF
    INTRODUCTION: Translaryngeal intubated and ventilated patients often need sedation to treat anxiety, agitation and/or pain. Current opinion is that tracheotomy reduces sedation requirements. We determined sedation needs before and after tracheotomy of intubated and mechanically ventilated patients. METHODS: We performed a retrospective analysis of the use of morphine, midazolam and propofol in patients before and after tracheotomy. RESULTS: Of 1,788 patients admitted to our intensive care unit during the study period, 129 (7%) were tracheotomized. After the exclusion of patients who received a tracheotomy before or at the day of admittance, 117 patients were left for analysis. The daily dose (DD; the amount of sedatives for each day) divided by the mean daily dose (MDD; the mean amount of sedatives per day for the study period) in the week before and the week after tracheotomy was 1.07 ± 0.93 DD/MDD versus 0.30 ± 0.65 for morphine, 0.84 ± 1.03 versus 0.11 ± 0.46 for midazolam, and 0.62 ± 1.05 versus 0.15 ± 0.45 for propofol (p < 0.01). However, when we focused on a shorter time interval (two days before and after tracheotomy), there were no differences in prescribed doses of morphine and midazolam. Studying the course in DD/MDD from seven days before the placement of tracheotomy, we found a significant decline in dosage. From day -7 to day -1, morphine dosage (DD/MDD) declined by 3.34 (95% confidence interval -1.61 to -6.24), midazolam dosage by 2.95 (-1.49 to -5.29) and propofol dosage by 1.05 (-0.41 to -2.01). After tracheotomy, no further decrease in DD/MDD was observed and the dosage remained stable for all sedatives. Patients in the non-surgical and acute surgical groups received higher dosages of midazolam than patients in the elective surgical group. Time until tracheotomy did not influence sedation requirements. In addition, there was no significant difference in sedation between different patient groups. CONCLUSION: In our intensive care unit, sedation requirements were not further reduced after tracheotomy. Sedation requirements were already sharply declining before tracheotomy was performed

    Mechanical ventilation with lower tidal volumes does not influence the prescription of opioids or sedatives

    Get PDF
    INTRODUCTION: We compared the effects of mechanical ventilation with a lower tidal volume (V(T)) strategy versus those of greater V(T) in patients with or without acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) on the use of opioids and sedatives. METHODS: This is a secondary analysis of a previously conducted before/after intervention study, which consisting of feedback and education on lung protective mechanical ventilation using lower V(T). We evaluated the effects of this intervention on medication prescriptions from days 0 to 28 after admission to our multidisciplinary intensive care unit. RESULTS: Medication prescriptions in 23 patients before and 38 patients after intervention were studied. Of these patients, 10 (44%) and 15 (40%) suffered from ALI/ARDS. The V(T) of ALI/ARDS patients declined from 9.7 ml/kg predicted body weight (PBW) before to 7.8 ml/kg PBW after the intervention (P = 0.007). For patients who did not have ALI/ARDS there was a trend toward a decline from 10.2 ml/kg PBW to 8.6 ml/kg PBW (P = 0.073). Arterial carbon dioxide tension was significantly greater after the intervention in ALI/ARDS patients. Neither the proportion of patients receiving opioids or sedatives, or prescriptions at individual time points differed between pre-intervention and post-intervention. Also, there were no statistically significant differences in doses of sedatives and opioids. Findings were no different between non-ALI/ARDS patients and ALI/ARDS patients. CONCLUSION: Concerns regarding sedation requirements with use of lower V(T) are unfounded and should not preclude its use in patients with ALI/ARD

    Manual hyperinflation partly prevents reductions of functional residual capacity in cardiac surgical patients - a randomized controlled trial

    Get PDF
    Cardiac surgery is associated with post-operative reductions of functional residual capacity (FRC). Manual hyperinflation (MH) aims to prevent airway plugging, and as such could prevent the reduction of FRC after surgery. The main purpose of this study was to determine the effect of MH on post-operative FRC of cardiac surgical patients. This was a randomized controlled trial of patients after elective coronary artery bypass graft and/or valve surgery admitted to the intensive care unit (ICU) of a university hospital. Patients were randomly assigned to a "routine MH group" (MH was performed within 30 minutes after admission to the ICU and every 6 hours thereafter, and before tracheal extubation), or a "control group" (MH was performed only if perceptible (audible) sputum was present in the larger airways causing problems with mechanical ventilation, or if oxygen saturation (SpO2) dropped below 92%). The primary endpoint was the reduction of FRC from the day before cardiac surgery to one, three, and five days after tracheal extubation. Secondary endpoints were SpO2 (at similar time points) and chest radiograph abnormalities, including atelectasis (at three days after tracheal extubation). A total of 100 patients were enrolled. Patients in the routine MH group showed a decrease of FRC on the first post-operative day to 71% of the pre-operative value, versus 57% in the control group (P = 0.002). Differences in FRC became less prominent over time; differences between the two study groups were no longer statistically significant at Day 5. There were no differences in SpO2 between the study groups. Chest radiographs showed more abnormalities (merely atelectasis) in the control group compared to patients in the routine MH group (P = 0.002). MH partly prevents the reduction of FRC in the first post-operative days after cardiac surgery. Netherlands Trial Register (NTR): NTR1384. http://www.trialregister.n

    AKT1 and MYC Induce Distinctive Metabolic Fingerprints in Human Prostate Cancer

    Get PDF
    Cancer cells may overcome growth factor dependence by deregulating oncogenic and/or tumor-suppressor pathways that affect their metabolism, or by activating metabolic pathways de novo with targeted mutations in critical metabolic enzymes. It is unknown whether human prostate tumors develop a similar metabolic response to different oncogenic drivers or a particular oncogenic event results in its own metabolic reprogramming. Akt and Myc are arguably the most prevalent driving oncogenes in prostate cancer. Mass spectrometry–based metabolite profiling was performed on immortalized human prostate epithelial cells transformed by AKT1 or MYC, transgenic mice driven by the same oncogenes under the control of a prostate-specific promoter, and human prostate specimens characterized for the expression and activation of these oncoproteins. Integrative analysis of these metabolomic datasets revealed that AKT1 activation was associated with accumulation of aerobic glycolysis metabolites, whereas MYC overexpression was associated with dysregulated lipid metabolism. Selected metabolites that differentially accumulated in the MYC-high versus AKT1-high tumors, or in normal versus tumor prostate tissue by untargeted metabolomics, were validated using absolute quantitation assays. Importantly, the AKT1/MYC status was independent of Gleason grade and pathologic staging. Our findings show how prostate tumors undergo a metabolic reprogramming that reflects their molecular phenotypes, with implications for the development of metabolic diagnostics and targeted therapeutics.Fil: Priolo, Carmen. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Pyne, Saumyadipta. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Rose, Joshua. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Regan, Erzsébet Ravasz. Harvard Medical School; Estados UnidosFil: Zadra, Giorgia. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Photopoulos, Cornelia. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Cacciatore, Stefano. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Schultz, Denise. Johns Hopkins University; Estados UnidosFil: Scaglia, Natalia. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: McDunn, Jonathan. Metabolon Inc.; Estados UnidosFil: de Marzo, Angelo M.. Johns Hopkins University; Estados UnidosFil: Loda, Massimo. Department of Pathology. Brigham and Women's Hospital; Estados Unidos. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados Unidos. University of Cambridge; Estados Unidos. King's College London. Division of Cancer Studies; Estados Unido

    MYC Overexpression Induces Prostatic Intraepithelial Neoplasia and Loss of Nkx3.1 in Mouse Luminal Epithelial Cells

    Get PDF
    Lo-MYC and Hi-MYC mice develop prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinoma as a result of MYC overexpression in the mouse prostate[1]. However, prior studies have not determined precisely when, and in which cell types, MYC is induced. Using immunohistochemistry (IHC) to localize MYC expression in Lo-MYC transgenic mice, we show that morphological and molecular alterations characteristic of high grade PIN arise in luminal epithelial cells as soon as MYC overexpression is detected. These changes include increased nuclear and nucleolar size and large scale chromatin remodeling. Mouse PIN cells retained a columnar architecture and abundant cytoplasm and appeared as either a single layer of neoplastic cells or as pseudo-stratified/multilayered structures with open glandular lumina—features highly analogous to human high grade PIN. Also using IHC, we show that the onset of MYC overexpression and PIN development coincided precisely with decreased expression of the homeodomain transcription factor and tumor suppressor, Nkx3.1. Virtually all normal appearing prostate luminal cells expressed high levels of Nkx3.1, but all cells expressing MYC in PIN lesions showed marked reductions in Nkx3.1, implicating MYC as a key factor that represses Nkx3.1 in PIN lesions. To determine the effects of less pronounced overexpression of MYC we generated a new line of mice expressing MYC in the prostate under the transcriptional control of the mouse Nkx3.1 control region. These “Super-Lo-MYC” mice also developed PIN, albeit a less aggressive form. We also identified a histologically defined intermediate step in the progression of mouse PIN into invasive adenocarcinoma. These lesions are characterized by a loss of cell polarity, multi-layering, and cribriform formation, and by a “paradoxical” increase in Nkx3.1 protein. Similar histopathological changes occurred in Hi-MYC mice, albeit with accelerated kinetics. Our results using IHC provide novel insights that support the contention that MYC overexpression is sufficient to transform prostate luminal epithelial cells into PIN cells in vivo. We also identified a novel histopathologically identifiable intermediate step prior to invasion that should facilitate studies of molecular pathway alterations occurring during early progression of prostatic adenocarcinomas

    Driving pressure during general anesthesia for open abdominal surgery (DESIGNATION) : study protocol of a randomized clinical trial

    Get PDF
    Background Intraoperative driving pressure (Delta P) is associated with development of postoperative pulmonary complications (PPC). When tidal volume (V-T) is kept constant, Delta P may change according to positive end-expiratory pressure (PEEP)-induced changes in lung aeration. Delta P may decrease if PEEP leads to a recruitment of collapsed lung tissue but will increase if PEEP mainly causes pulmonary overdistension. This study tests the hypothesis that individualized high PEEP, when compared to fixed low PEEP, protects against PPC in patients undergoing open abdominal surgery. Methods The "Driving prESsure durIng GeNeral AnesThesIa for Open abdomiNal surgery trial" (DESIGNATION) is an international, multicenter, two-group, double-blind randomized clinical superiority trial. A total of 1468 patients will be randomly assigned to one of the two intraoperative ventilation strategies. Investigators screen patients aged >= 18 years and with a body mass index <= 40 kg/m(2), scheduled for open abdominal surgery and at risk for PPC. Patients either receive an intraoperative ventilation strategy with individualized high PEEP with recruitment maneuvers (RM) ("individualized high PEEP") or one in which PEEP of 5 cm H2O without RM is used ("low PEEP"). In the "individualized high PEEP" group, PEEP is set at the level at which Delta P is lowest. In both groups of the trial, V-T is kept at 8 mL/kg predicted body weight. The primary endpoint is the occurrence of PPC, recorded as a collapsed composite of adverse pulmonary events. Discussion DESIGNATION will be the first randomized clinical trial that is adequately powered to compare the effects of individualized high PEEP with RM versus fixed low PEEP without RM on the occurrence of PPC after open abdominal surgery. The results of DESIGNATION will support anesthesiologists in their decisions regarding PEEP settings during open abdominal surgery

    Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker
    • …
    corecore