993 research outputs found

    Temperatures and metallicities of M giants in the galactic Bulge from low-resolution K-band spectra

    Full text link
    With the existing and upcoming large multi-fibre low-resolution spectrographs, the question arises how precise stellar parameters such as Teff and [Fe/H] can be obtained from low-resolution K-band spectra with respect to traditional photometric temperature measurements. Until now, most of the effective temperatures in galactic Bulge studies come directly from photometric techniques. Uncertainties in interstellar reddening and in the assumed extinction law could lead to large systematic errors. We aim to obtain and calibrate the relation between Teff and the 12CO\rm ^{12}CO first overtone bands for M giants in the galactic Bulge covering a wide range in metallicity. We use low-resolution spectra for 20 M giants with well-studied parameters from photometric measurements covering the temperature range 3200 < Teff < 4500 K and a metallicity range from 0.5 dex down to -1.2 dex and study the behaviour of Teff and [Fe/H] on the spectral indices. We find a tight relation between Teff and the 12CO(2−0)\rm ^{12}CO(2-0) band with a dispersion of 95 K as well as between Teff and the 12CO(3−1)\rm ^{12}CO(3-1) with a dispersion of 120 K. We do not find any dependence of these relations on the metallicity of the star, making them relation attractive for galactic Bulge studies. This relation is also not sensitive to the spectral resolution allowing to apply this relation in a more general way. We also found a correlation between the combination of the NaI, CaI and the 12CO\rm ^{12}CO band with the metallicity of the star. However this relation is only valid for sub-solar metallicities. We show that low-resolution spectra provide a powerful tool to obtain effective temperatures of M giants. We show that this relation does not depend on the metallicity of the star within the investigated range and is also applicable to different spectral resolution.Comment: 6 pages, accepted for publication in Astronomy&Astrophysic

    Stellar sources in the ISOGAL intermediate bulge fields

    Get PDF
    We present a study of ISOGAL sources in the "intermediate" galactic bulge (∣|ll∣| << 2∘^\circ, ∣|bb∣| ∌\sim 1∘^\circ--4∘^\circ), observed by ISOCAM at 7 and 15 ÎŒm\mu m. In combination with near-infrared (I, J, Ks_{\rm s}) data of DENIS survey, complemented by 2MASS data, we discuss the nature of the ISOGAL sources, their luminosities, the interstellar extinction and the mass-loss rates. A large fraction of the 1464 detected sources at 15 ÎŒm\mu m are AGB stars above the RGB tip, a number of them show an excess in ([7]-[15])0_{\rm 0} and (Ks_{\rm s}-[15])0_{\rm 0} colours, characteristic of mass-loss. The latter, especially (Ks_{\rm s}-[15])0_{\rm 0}, provide estimates of the mass-loss rates and show their distribution in the range 10−8^{-8} to 10−5^{-5} M⊙_{\rm \odot}/yr.Comment: 16 pages, accepted for publication in Astronomy and Astrophysic

    Constraining the Milky Way potential using the dynamical kinematic substructures

    Get PDF
    We present a method to constrain the potential of the non-axisymmetric components of the Galaxy using the kinematics of stars in the solar neighborhood. The basic premise is that dynamical substructures in phase-space (i.e. due to the bar and/or spiral arms) are associated with families of periodic or irregular orbits, which may be easily identified in orbital frequency space. We use the "observed" positions and velocities of stars as initial conditions for orbital integrations in a variety of gravitational potentials. We then compute their characteristic frequencies, and study the structure present in the frequency maps. We find that the distribution of dynamical substructures in velocity- and frequency-space is best preserved when the integrations are performed in the "true" gravitational potential.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011

    Stellar populations in a standard ISOGAL field in the Galactic disk

    Full text link
    We aim to identify the stellar populations (mostly red giants and young stars) detected in the ISOGAL survey at 7 and 15micron towards a field (LN45) in the direction l=-45, b=0.0. The sources detected in the survey of the Galactic plane by the Infrared Space Observatory are characterized based on colour-colour and colour-magnitude diagrams. We combine the ISOGAL catalog with the data from surveys such as 2MASS and GLIMPSE. Interstellar extinction and distance are estimated using the red clump stars detected by 2MASS in combination with the isochrones for the AGB/RGB branch. Absolute magnitudes are thus derived and the stellar populations are identified based on their absolute magnitudes and their infrared excess. A standard approach to the analysis of ISOGAL disk observations has been established. We identify several hundred RGB/AGB stars and 22 candidate young stellar objects in the direction of this field in an area of 0.16 deg^2. An over-density of stellar sources is found at distances corresponding to the distance of the Scutum-Crux spiral arm. In addition, we determine mass-loss rates of AGB-stars using dust radiative transfer models from the literature.Comment: 48pages, 38 figures, accepted for publication in A &

    Schwarzschild models of the Sculptor dSph galaxy

    Get PDF
    We have developed a spherically symmetric dynamical model of a dwarf spheroidal galaxy using the Schwarzschild method. This type of modelling yields constraints both on the total mass distribution (e.g. enclosed mass and scale radius) as well as on the orbital structure of the system modelled (e.g. velocity anisotropy). Therefore not only can we derive the dark matter content of these systems, but also explore possible formation scenarios. Here we present preliminary results for the Sculptor dSph. We find that the mass of Sculptor within 1kpc is 8.5\times10^(7\pm0.05) M\odot, its anisotropy profile is tangentially biased and slightly more isotropic near the center. For an NFW profile, the preferred concentration (~15) is compatible with cosmological models. Very cuspy density profiles (steeper than NFW) are strongly disfavoured for Sculptor.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011

    Interstellar extinction towards the inner Galactic Bulge

    Get PDF
    DENIS observations in the J (1.2 micron) and K_S (2.15 micron) bands together with isochrones calculated for the RGB and AGB phase are used to draw an extinction map of the inner Galactic Bulge. The uncertainty in this method is mainly limited by the optical depth of the Bulge itself. A comparison with fields of known extinction shows a very good agreement. We present an extinction map for the inner Galactic Bulge (approx. 20 sq. deg.)Comment: 4 pages, 4 figures, accepted for publication in A&A as a letter, see also http://www-denis.iap.fr/articles/extinction

    Mixed Early and Late-Type Properties in the Bar of NGC 6221: Evidence for Evolution along the Hubble Sequence?

    Get PDF
    Rotation curves and velocity dispersion profiles are presented for both the stellar and gaseous components along five different position angles (P.A.=5, 50, 95, 125 and 155 degrees) of the nearby barred spiral NGC 6221. The observed kinematics extends out to about 80" from the nucleus. Narrow and broad-band imaging is also presented. The radial profiles of the fluxes ratio [NII]/Halpha reveal the presence of a ring-like structure of ionized gas, with a radius of about 9" and a deprojected circular velocity of about 280 km/s. The analysis of the dynamics of the bar indicates this ring is related to the presence of an inner Lindblad resonance (ILR) at 1.3 kpc. NGC6221 is found to exhibit intermediate properties between those of the early-type barred galaxies: the presence of a gaseous ring at an ILR, the bar edge located between the ILR's and the corotation radius beyond the steep rising portion of the rotation curve, the dust-lane pattern, and those of the late-type galaxies: an almost exponential surface brightness profile, the presence of Halpha regions along all the bar, the spiral-arm pattern. It is consistent with scenarios of bar-induced evolution from later to earlier-type galaxies.Comment: 1 File ds7406.tar.gz which contains: one latex file (ds7406.tex), and 10 encsulated postscript figures (ds7406f**.eps). To be compiled with aa-l latex2e macro style. To be published in A&A Sup. Serie

    Massive Young Stellar Objects in the Galactic Center. I. Spectroscopic Identification from Spitzer/IRS Observations

    Get PDF
    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central ~300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5um to 35um using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4um shoulder on the absorption profile of 15um CO2 ice, suggestive of CO2 ice mixed with CH3OH ice on grains. This 15.4um shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from CO2, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 Msun, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of ~0.07 Msun/yr at the GC.Comment: Accepted for publication in Ap

    Low resolution spectroscopy of ISOGAL sources: Search for early-type stars with infrared excess

    Get PDF
    An analysis of low resolution spectra and infared data of 29 ISOGAL-DENIS sources with mid-IR excess is presented. Eight ISOGAL sources from our sample with 7-15 micron excess are found to be B and A-type stars, some of them with emission lines. Two ISOGAL sources, J175614.4-240831 (B3-4IIIe) and J173845.3-312403 (B7III), show a bump between 5000 and 6000 Angstroem which maybe attributed to extended red emission (ERE). Some of the B,A and F-type giants with a large infrared excess might be in the post-AGB phase. For about 50% of the sources in this preliminary study, a nearby second (or even multiple) component was found. Such sources, in particular two B-stars, are not discussed when the probability of the optical spectrum being associated with the ISOGAL source is low. These results confirm that the DENIS-ISOGAL I-J/K-[15] diagram is the most suitable diagram to distinguish between early (AB) and late spectral types (KM). It provides the most useful tool to systematically search for nearby early-type stars with an infrared excess among the background of distant AGB stars in ISOGAL fields of the Galactic disk

    Explanatory Supplement of the ISOGAL-DENIS Point Source Catalogue

    Get PDF
    We present version 1.0 of the ISOGAL-DENIS Point Source Catalogue (PSC), containing more than 100,000 point sources detected at 7 and/or 15 micron in the ISOGAL survey of the inner Galaxy with the ISOCAM instrument on board the Infrared Space Observatory (ISO). These sources are cross-identified, wherever possible, with near-infrared (0.8-2.2 micron) data from the DENIS survey. The overall surface covered by the ISOGAL survey is about 16 square degrees, mostly (95%) distributed near the Galactic plane (|b| < 1 deg), where the source extraction can become confusion limited and perturbed by the high background emission. Therefore, special care has been taken aimed at limiting the photometric error to ~0.2 magnitude down to a sensitivity limit of typically 10 mJy. The present paper gives a complete description of the entries and the information which can be found in this catalogue, as well as a detailed discussion of the data processing and the quality checks which have been completed. The catalogue is available via the VizieR Service at the Centre de Donn\'ees Astronomiques de Strasbourg (CDS, http://vizier.u-strasbg.fr/viz-bin/VizieR/) and also via the server at the Institut d'Astrophysique de Paris (http://www-isogal.iap.fr/). A more complete version of this paper, including a detailed description of the data processing, is available in electronic form through the ADS service.Comment: 21 pages, 7 figures. A&A in press. Full length version with 32 figures and detailed description of the data processing is available here: http://www-isogal.iap.fr/Publications/ExplSupplFull.ps.g
    • 

    corecore