1,045 research outputs found

    The Galactic bulge as seen in optical surveys

    Full text link
    The bulge is a region of the Galaxy of tremendous interest for understanding galaxy formation. However measuring photometry and kinematics in it raises several inherent issues, such as severe crowding and high extinction in the visible. Using the Besancon Galaxy model and a 3D extinction map, we estimate the stellar density as a function of longitude, latitude and apparent magnitude and we deduce the possibility of reaching and measuring bulge stars with Gaia. We also present an ongoing analysis of the bulge using the Canada-France-Hawaii Telescope.Comment: In SF2A-2008: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysic

    The Effective temperature scale of M dwarfs from spectral synthesis

    Full text link
    We present a comparison of low-resolution spectra of 60 stars covering the whole M-dwarf sequence. Using the most recent PHOENIX BT-Settl stellar model atmospheres (see paper by F. Allard, in this book) we do a first quantitative compari- son to our observed spectra in the wavelength range 550-950 nm. We perform a first confrontation between models and observations and we assign an effective tempera- tures to the observed M-dwarfs. Teff-spectral type relations are then compared with the published ones. This comparison also aims at improving the models' opacities.Comment: To be published in the on-line version of the Proceedings of Cool Stars 16 (ASP Conference Series) New version with bibliography correcte

    The visibility of the Galactic bulge in optical surveys. Application to the Gaia mission

    Full text link
    The bulge is a region of the Galaxy which is of tremendous interest for understanding Galaxy formation. However, measuring photometry and kinematics in it raises several inherent issues, like high extinction in the visible and severe crowding. Here we attempt to estimate the problem of the visibility of the bulge at optical wavelengths, where large CCD mosaics allow to easily cover wide regions from the ground, and where future astrometric missions are planned. Assuming the Besancon Galaxy model and high resolution extinction maps, we estimate the stellar density as a function of longitude, latitude and apparent magnitude and we deduce the possibility of reaching and measuring bulge stars. The method is applied to three Gaia instruments, the BBP and MBP photometers, and the RVS spectrograph. We conclude that, while in the BBP most of the bulge will be accessible, in the MBP there will be a small but significant number of regions where bulge stars will be detected and accurately measured in crowded fields. Assuming that the RVS spectra may be extracted in moderately crowded fields, the bulge will be accessible in most regions apart from the strongly absorbed inner plane regions, because of high extinction, and in low extinction windows like the Baades's window where the crowding is too severe.Comment: 11 pages, 9 figures, accepted for publication in A&A, latex using A&A macro

    Accretion by the Galaxy

    Get PDF
    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. HI observations of external galaxies show that they have HI halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of HI increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic HI. The values of the model's parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies "red and dead."Comment: Invited review at "Assembling the Puzzle of the Milky Way", Grand Bornand, April 2011; 6 page

    Constraining the Milky Way potential using the dynamical kinematic substructures

    Get PDF
    We present a method to constrain the potential of the non-axisymmetric components of the Galaxy using the kinematics of stars in the solar neighborhood. The basic premise is that dynamical substructures in phase-space (i.e. due to the bar and/or spiral arms) are associated with families of periodic or irregular orbits, which may be easily identified in orbital frequency space. We use the "observed" positions and velocities of stars as initial conditions for orbital integrations in a variety of gravitational potentials. We then compute their characteristic frequencies, and study the structure present in the frequency maps. We find that the distribution of dynamical substructures in velocity- and frequency-space is best preserved when the integrations are performed in the "true" gravitational potential.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011

    Constraining the structure and formation of the Galactic bulge from a field in its outskirts. FLAMES-GIRAFFE spectra of about 400 red giants around (l,b)=(0{\deg},-10{\deg})

    Full text link
    The presence of two stellar populations in the Milky Way bulge has been reported recently. We aim at studying the abundances and kinematics of stars in the outer bulge, thereby providing additional constraints on models of its formation. Spectra of 401 red giant stars in a field at (l,b)=(0{\deg},-10{\deg}) were obtained with FLAMES at the VLT. Stars of luminosities down to below the two bulge red clumps (RCs) are included. From these spectra we measure general metallicities, abundances of Fe and the alpha-elements, and radial velocities (RV) of the stars. These measurements as well as photometric data are compared to simulations with the Besancon and TRILEGAL models of the Galaxy. We confirm the presence of two populations among our sample stars: i) a metal-rich one at [M/H] ~+0.3, comprising about 30% of the sample, with low RV dispersion and low alpha-abundance, and ii) a metal-poor population at [M/H] ~-0.6 with high RV dispersion and high alpha-abundance. The metal-rich population could be connected to the Galactic bar. We identify this population as the carrier of the double RC feature. We do not find a significant difference in metallicity or RV between the two RCs, a small difference in metallicity being probably due to a selection effect. The RV dispersion agrees well with predictions of the Besancon Galaxy model, but the metallicity of the "thick bulge" model component should be shifted to lower metallicity by 0.2 to 0.3dex to well reproduce the observations. We present evidence that the metallicity distribution function depends on the evolutionary state of the sample stars, suggesting that enhanced mass loss preferentially removes metal-rich stars. We also confirm the decrease of \alpha-element over-abundance with increasing metallicity.Comment: 19 pages (excluding on-line table), 21 figures, accepted for publication in A&

    Kinematic groups across the MW disc: insights from models and from the RAVE catalogue

    Get PDF
    With the advent of the Gaia data, the unprecedented kinematic census of great part of the Milky Way disc will allow us to characterise the local kinematic groups and new groups in different disc neighbourhoods. First, we show here that the models predict a stellar kinematic response to the spiral arms and bar strongly dependent on disc position. For example, we find that the kinematic groups induced by the spiral arm models change significantly if one moves only ~ 0.6 kpc in galactocentric radius, but ~ 2 kpc in azimuth. There are more and stronger groups as one approaches the spiral arms. Depending on the spiral pattern speed, the kinematic imprints are more intense in nearby vicinities or far from the Sun. Secondly, we present a preliminary study of the kinematic groups observed by RAVE. This sample will allow us, for the first time, to study the dependence on Galactic position of the (thin and thick) disc moving groups. In the solar neighbourhood, we find the same kinematics groups as detected in previous surveys, but now with better statistics and over a larger spatial volume around the Sun. This indicates that these structures are indeed large scale kinematic features.Comment: 4 pages, 3 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (April 17-22, 2011), C. Reyle, A. Robin, M. Schultheis (eds.

    Stellar populations in a standard ISOGAL field in the Galactic disk

    Full text link
    We aim to identify the stellar populations (mostly red giants and young stars) detected in the ISOGAL survey at 7 and 15micron towards a field (LN45) in the direction l=-45, b=0.0. The sources detected in the survey of the Galactic plane by the Infrared Space Observatory are characterized based on colour-colour and colour-magnitude diagrams. We combine the ISOGAL catalog with the data from surveys such as 2MASS and GLIMPSE. Interstellar extinction and distance are estimated using the red clump stars detected by 2MASS in combination with the isochrones for the AGB/RGB branch. Absolute magnitudes are thus derived and the stellar populations are identified based on their absolute magnitudes and their infrared excess. A standard approach to the analysis of ISOGAL disk observations has been established. We identify several hundred RGB/AGB stars and 22 candidate young stellar objects in the direction of this field in an area of 0.16 deg^2. An over-density of stellar sources is found at distances corresponding to the distance of the Scutum-Crux spiral arm. In addition, we determine mass-loss rates of AGB-stars using dust radiative transfer models from the literature.Comment: 48pages, 38 figures, accepted for publication in A &
    • 

    corecore