16 research outputs found

    Extensively Drug-Resistant Klebsiella pneumoniae Counteracts Fitness and Virulence Costs That Accompanied Ceftazidime-Avibactam Resistance Acquisition

    Get PDF
    The ability of extensively drug-resistant (XDR) Klebsiella pneumoniae to rapidly acquire resistance to novel antibiotics is a global concern. Moreover, Klebsiella clonal lineages that successfully combine resistance and hypervirulence have increasingly occurred during the last years. However, the underlying mechanisms of counteracting fitness costs that accompany antibiotic resistance acquisition remain largely unexplored. Here, we investigated whether and how an XDR sequence type (ST)307 K. pneumoniae strain developed resistance against the novel drug combination ceftazidime-avibactam (CAZ-AVI) using experimental evolution. In addition, we performed in vitro and in vivo assays, molecular modeling, and bioinformatics to identify resistance-conferring processes and explore the resulting decrease in fitness and virulence. Furthermore, the genomic and transcriptomic analyses suggest the envelope stress response regulator rpoE and associated RpoE-regulated genes as drivers of this compensation. This study verifies the crucial role of OmpK36 in CAZ-AVI resistance and shows the rapid adaptation of a bacterial pathogen to compensate fitness- and virulence-associated resistance costs, which possibly contributes to the emergence of successful clonal lineages. IMPORTANCE Extensively drug-resistant Klebsiella pneumoniae causing major outbreaks and severe infections has become a significant challenge for health care systems worldwide. Rapid resistance development against last-resort therapeutics like ceftazidime-avibactam is a significant driver for the accelerated emergence of such pathogens. These results highlight underlying mechanisms and contribute to the understanding of factors important for the emergence of successful bacterial pathogens

    Exploring the Free Energy Landscape of Molecular Systems

    No full text
    The investigation of complex molecular systems by molecular dynamics simulations has been successfully established and proven as a standard method during the last decades. The use of highly optimized algorithms and steadily increasing, generally available computing resources enables even larger and longer simulations. However, the dynamics of the system itself is not accelerated, and it can be trapped in low energy minima that can only be overcome slowly. A number of methods have therefore been developed to address this problem. Within the context of this dissertation, a novel algorithm based on replica exchange was developed to solve problems with existing methods, which can now be used for large molecular systems with a low resource consumption. Parameter dependence was systematically evaluated and optimized to define guidelines for correct application. This algorithm was successfully applied to various pharmaceutical and biochemical problems, such as protein folding or protein-protein interactions.Die Untersuchung komplexer molekularer Systeme mittels MolekĂŒldynamik-Simulationen hat sich in den letzten Jahrzehnten als eine Standardmethode etabliert und als sehr leistungsfĂ€hig erwiesen. Der Einsatz hochoptimierter Algorithmen und stetig steigende, allgemein verfĂŒgbare Rechenressourcen ermöglicht immer grĂ¶ĂŸere und lĂ€ngere Simulationen. Die Dynamik des Systems selbst wird dabei jedoch nicht beschleunigt und es kann somit in tiefe Energieminima geraten, die nur langsam ĂŒberwunden werden können. Es wurden daher eine Reihe von Methoden entwickelt, um dieses Problem zu adressieren. Im Rahmen dieser Dissertation wurde ein neuartiger Algorithmus auf Basis eines Replica-Austauschs entwickelt, der Probleme mit bestehenden Methoden lösen und bei einem geringen Ressourcenverbrauch auch fĂŒr große molekulare Systeme eingesetzt werden kann. Die AbhĂ€ngigkeit von Parametern wurde systematisch evaluiert und optimiert, um Richtlinien fĂŒr die korrekte Anwendung zu definieren. Am Beispiel von diversen pharmazeutischen und biochemischen Fragestellungen, wie Protein-Faltung oder Protein-Protein-Interaktionen, konnte dieser Algorithmus erfolgreich eingesetzt werden

    The EyeFlowCell: Development of a 3D-Printed Dissolution Test Setup for Intravitreal Dosage Forms

    No full text
    An in vitro dissolution model, the so-called EyeFlowCell (EFC), was developed to test intravitreal dosage forms, simulating parameters such as the gel-like consistency of the vitreous body. The developed model consists of a stereolithography 3D-printed flow-through cell with a polyacrylamide (PAA) gel as its core. This gel needed to be coated with an agarose sheath because of its low viscosity. Drug release from hydroxypropyl methylcellulose-based implants containing either triamcinolone acetonide or fluorescein sodium was studied in the EFC using a schematic eye movement by the EyeMovementSystem (EyeMoS). For comparison, studies were performed in USP apparatus 4 and USP apparatus 7. Significantly slower drug release was observed in the PAA gel for both model drugs compared with the compendial methods. Drug release from fluorescein sodium-containing model implants was completed after 40 min in USP apparatus 4, whereas drug release in the gel-based EFC lasted 72 h. Drug release from triamcinolone acetonide-containing model implants was completed after 35 min in USP apparatus 4 and after 150 min in USP apparatus 7, whereas this was delayed until 96 h in the EFC. These results suggest that compendial release methods may overestimate the drug release rate in the human vitreous body. Using a gel-based in vitro release system such as the EFC may better predict drug release

    Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease

    Get PDF
    The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis

    Subcritical Fluid Chromatography at Sub-Ambient Temperatures for the Chiral Resolution of Ketamine Metabolites with Rapid-Onset Antidepressant Effects

    Get PDF
    Chiral metabolites of ketamine exerting rapid-onset yet sustained antidepressant effects may be marketed directly in the future, but require chemo- and enantio-selective chromatographic methods for quality assurance and control. The chromatographic behavior of S-/R-ketamine, S-/R-norketamine, S-/R-dehydronorketamine, and (2R,6R)-/(2S,6S)-hydroxynorketamine in supercritical fluid chromatography (SFC) was investigated computationally and experimentally with the aim of identifying problematic pairs of enantiomers and parameters for chiral resolution. Retention on three different polysaccharide-based chiral stationary phases (Lux Amylose-2, i-Amylose-3, and i-Cellulose-5) provided new information on the significance of halogen atoms as halogen bond donors and hydrogen bond acceptors for enantioselectivity, which could be corroborated in silico by molecular docking studies. Modifiers inversely affected enantioselectivity and retention. Methanol yielded lower run times but superior chiral resolution compared to 2-propanol. Lower temperatures than those conventionally screened did not impair phase homogeneity but improved enantioresolution, at no cost to reproducibility. Thus, sub-ambient temperature subcritical fluid chromatography (SubFC), essentially low-temperature HPLC with subcritical CO2, was applied. The optimization of the SubFC method facilitated the chiral separation of ketamine and its metabolites, which was applied in combination with direct injection and online supercritical fluid extraction to determine the purity of pharmaceutical ketamine formulations for proof of concept

    Carba Analogues of Flupirtine and Retigabine with Improved Oxidation Resistance and Reduced Risk of Quinoid Metabolite Formation

    No full text
    Abstract The KV7 potassium channel openers flupirtine and retigabine have been valuable options in the therapy of pain and epilepsy. However, as a result of adverse reactions, both drugs are currently no longer in therapeutic use. The flupirtine‐induced liver injury and the retigabine linked tissue discolouration do not appear related at first glance; nevertheless, both events can be attributed to the triaminoaryl scaffold, which is affected by oxidation leading to elusive reactive quinone diimine or azaquinone diimine metabolites. Since the mechanism of action, i. e. KV7 channel opening, seems not to be involved in toxicity, this study aimed to further develop safer replacements for flupirtine and retigabine. In a ligand‐based design strategy, replacing amino substituents of the triaminoaryl core with alkyl substituents led to carba analogues with improved oxidation resistance and negligible risk of quinoid metabolite formation. In addition to these improved safety features, some of the novel analogues exhibited significantly improved KV7.2/3 channel opening activity, indicated by an up to 13‐fold increase in potency and an efficacy of up to 176 % compared to flupirtine, thus being attractive candidates for further development

    Modifications of the Triaminoaryl Metabophore of Flupirtine and Retigabine Aimed at Avoiding Quinone Diimine Formation

    No full text
    The potassium channel opening drugs flupirtine and retigabine have been withdrawn from the market due to occasional drug-induced liver injury (DILI) and tissue discoloration, respectively. While the mechanism underlying DILI after prolonged flupirtine use is not entirely understood, evidence indicates that both drugs are metabolized in an initial step to reactive ortho- and/or para-azaquinone diimines or ortho- and/or para-quinone diimines, respectively. Aiming to develop safer alternatives for the treatment of pain and epilepsy, we have attempted to separate activity from toxicity by employing a drug design strategy of avoiding the detrimental oxidation of the central aromatic ring by shifting oxidation toward the formation of benign metabolites. In the present investigation, an alternative retrometabolic design strategy was followed. The nitrogen atom, which could be involved in the formation of both ortho- or para-quinone diimines of the lead structures, was shifted away from the central ring, yielding a substitution pattern with nitrogen substituents in the meta position only. Evaluation of KV7.2/3 opening activity of the 11 new specially designed derivatives revealed surprisingly steep structure–activity relationship data with inactive compounds and an activity cliff that led to the identification of an apparent “magic methyl” effect in the case of N-(4-fluorobenzyl)-6-[(4-fluorobenzyl)amino]-2-methoxy-4-methylnicotinamide. This flupirtine analogue showed potent KV7.2/3 opening activity, being six times as active as flupirtine itself, and by design is devoid of the potential for azaquinone diimine formation

    Activation of Sirtuin 2 Inhibitors Employing Photoswitchable Geometry and Aqueous Solubility

    No full text
    Abstract Because isoenzymes of the experimentally and therapeutically extremely relevant sirtuin family show high similarity, addressing the unique selectivity pocket of sirtuin 2 is a promising strategy towards selective inhibitors. An unrelated approach towards selective inhibition of isoenzymes with varied tissue distribution is targeted drug delivery or spatiotemporal activation by photochemical activation. Azologization of two nicotinamide‐mimicking lead structures was undertaken to combine both approaches and yielded a set of 33 azobenzenes and azopyridines that have been evaluated for their photochemical behaviour and bioactivity. For some compounds, inhibitory activity reached the sub‐micromolar range in their thermodynamically favoured E form and could be decreased by photoisomerization to the metastable Z form. Besides, derivatization with long‐chain fatty acids yielded potent sirtuin 2 inhibitors, featuring another intriguing aspect of azo‐based photoswitches. In these compounds, switching to the Z isomer increased aqueous solubility and thereby enhanced biological activity by up to a factor of 21. The biological activity of two compounds was confirmed by hyperacetylation of sirtuin specific histone proteins in a cell‐based activity assay
    corecore